Fermion Quasi-Spherical Harmonics
Hunter, G. ; Ecimovic, P. ; Schlifer, I. ; Walker, I. M. ; Beamish, D. ; Donev, S. ; Kowalski, M. ; Arslan, S. ; Heck, S.
arXiv, 9810001 / Harvested from arXiv
Spherical Harmonics, $Y_\ell^m(\theta,\phi)$, are derived and presented (in a Table) for half-odd-integer values of $\ell$ and $m$. These functions are eigenfunctions of $L^2$ and $L_z$ written as differential operators in the spherical-polar angles, $\theta$ and $\phi$. The Fermion Spherical Harmonics are a new, scalar and angular-coordinate-dependent representation of fermion spin angular momentum. They have $4\pi$ symmetry in the angle $\phi$, and hence are not single-valued functions on the Euclidean unit sphere; they are double-valued functions on the sphere, or alternatively are interpreted as having a double-sphere as their domain.
Publié le : 1998-10-02
Classification:  Mathematical Physics,  Mathematics - Quantum Algebra,  33C55,  33C80
@article{9810001,
     author = {Hunter, G. and Ecimovic, P. and Schlifer, I. and Walker, I. M. and Beamish, D. and Donev, S. and Kowalski, M. and Arslan, S. and Heck, S.},
     title = {Fermion Quasi-Spherical Harmonics},
     journal = {arXiv},
     volume = {1998},
     number = {0},
     year = {1998},
     language = {en},
     url = {http://dml.mathdoc.fr/item/9810001}
}
Hunter, G.; Ecimovic, P.; Schlifer, I.; Walker, I. M.; Beamish, D.; Donev, S.; Kowalski, M.; Arslan, S.; Heck, S. Fermion Quasi-Spherical Harmonics. arXiv, Tome 1998 (1998) no. 0, . http://gdmltest.u-ga.fr/item/9810001/