The Equivalence Principle (EP), stating that all physical systems are
connected by a coordinate transformation to the free one with vanishing energy,
univocally leads to the Quantum Stationary HJ Equation (QSHJE). Trajectories
depend on the Planck length through hidden variables which arise as initial
conditions. The formulation has manifest p-q duality, a consequence of the
involutive nature of the Legendre transform and of its recently observed
relation with second-order linear differential equations. This reflects in an
intrinsic psi^D-psi duality between linearly independent solutions of the
Schroedinger equation. Unlike Bohm's theory, there is a non-trivial action even
for bound states. No use of any axiomatic interpretation of the wave-function
is made. Tunnelling is a direct consequence of the quantum potential which
differs from the usual one and plays the role of particle's self-energy. The
QSHJE is defined only if the ratio psi^D/psi is a local self-homeomorphism of
the extended real line. This is an important feature as the L^2 condition,
which in the usual formulation is a consequence of the axiomatic interpretation
of the wave-function, directly follows as a basic theorem which only uses the
geometrical gluing conditions of psi^D/psi at q=\pm\infty as implied by the EP.
As a result, the EP itself implies a dynamical equation that does not require
any further assumption and reproduces both tunnelling and energy quantization.
Several features of the formulation show how the Copenhagen interpretation
hides the underlying nature of QM. Finally, the non-stationary higher
dimensional quantum HJ equation and the relativistic extension are derived.