Highest weight irreducible representations of the Lie superalgebra $gl(1/\infty)$
Palev, T. D. ; Stoilova, N. I.
arXiv, 9809024 / Harvested from arXiv
Two classes of irreducible highest weight modules of the general linear Lie superalgebra $gl(1/\infty)$ are constructed. Within each module a basis is introduced and the transformation relations of the basis under the action of the algebra generators are written down.
Publié le : 1998-09-28
Classification:  Mathematical Physics,  High Energy Physics - Theory,  Mathematics - Group Theory,  Mathematics - Quantum Algebra,  Mathematics - Representation Theory
@article{9809024,
     author = {Palev, T. D. and Stoilova, N. I.},
     title = {Highest weight irreducible representations of the Lie superalgebra
  $gl(1/\infty)$},
     journal = {arXiv},
     volume = {1998},
     number = {0},
     year = {1998},
     language = {en},
     url = {http://dml.mathdoc.fr/item/9809024}
}
Palev, T. D.; Stoilova, N. I. Highest weight irreducible representations of the Lie superalgebra
  $gl(1/\infty)$. arXiv, Tome 1998 (1998) no. 0, . http://gdmltest.u-ga.fr/item/9809024/