Noncommutative geometry and a class of completely integrable models
Dimakis, A. ; Muller-Hoissen, F.
arXiv, 9809023 / Harvested from arXiv
We introduce a Hodge operator in a framework of noncommutative geometry. The complete integrability of 2-dimensional classical harmonic maps into groups (sigma-models or principal chiral models) is then extended to a class of 'noncommutative' harmonic maps into matrix algebras.
Publié le : 1998-09-26
Classification:  Mathematical Physics
@article{9809023,
     author = {Dimakis, A. and Muller-Hoissen, F.},
     title = {Noncommutative geometry and a class of completely integrable models},
     journal = {arXiv},
     volume = {1998},
     number = {0},
     year = {1998},
     language = {en},
     url = {http://dml.mathdoc.fr/item/9809023}
}
Dimakis, A.; Muller-Hoissen, F. Noncommutative geometry and a class of completely integrable models. arXiv, Tome 1998 (1998) no. 0, . http://gdmltest.u-ga.fr/item/9809023/