In this paper we study stochastic dynamics which leaves quantum gravity
equilibrium distribution invariant. We start theoretical study of this dynamics
(earlier it was only used for Monte-Carlo simulation). Main new results concern
the existence and properties of local correlation functions in the
thermodynamic limit. The study of dynamics constitutes a third part of the
series of papers where more general class of processes were studied (but it is
self-contained), those processes have some universal significance in
probability and they cover most concrete processes, also they have many
examples in computer science and biology. At the same time the paper can serve
an introduction to quantum gravity for a probabilist: we give a rigorous
exposition of quantum gravity in the planar pure gravity case. Mostly we use
combinatorial techniques, instead of more popular in physics random matrix
models, the central point is the famous $\alpha =-7/2$ exponent.