Wavelets in Banach Spaces
Kisil, Vladimir V.
arXiv, 9807141 / Harvested from arXiv
We describe a construction of wavelets (coherent states) in Banach spaces generated by ``admissible'' group representations. Our main targets are applications in pure mathematics while connections with quantum mechanics are mentioned. As an example we consider operator valued Segal-Bargmann type spaces and the Weyl functional calculus. Keywords: Wavelets, coherent states, Banach spaces, group representations, covariant, contravariant (Wick) symbols, Heisenberg group, Segal-Bargmann spaces, Weyl functional calculus (quantization), second quantization, bosonic field.
Publié le : 1998-07-25
Classification:  Mathematics - Functional Analysis,  Mathematical Physics,  Mathematics - Complex Variables,  Mathematics - Representation Theory,  Quantum Physics,  43A85 (Primary),  32M99, 43A32, 46E10, 47A60, 47A67, 47C99, 81R30, 81S10 (Secondary)
@article{9807141,
     author = {Kisil, Vladimir V.},
     title = {Wavelets in Banach Spaces},
     journal = {arXiv},
     volume = {1998},
     number = {0},
     year = {1998},
     language = {en},
     url = {http://dml.mathdoc.fr/item/9807141}
}
Kisil, Vladimir V. Wavelets in Banach Spaces. arXiv, Tome 1998 (1998) no. 0, . http://gdmltest.u-ga.fr/item/9807141/