We show that the photonic analogue of the Korringa-Kohn-Rostocker method is a
viable alternative to the plane-wave method to analyze the spectrum of
electromagnetic waves in a three-dimensional periodic dielectric lattice.
Firstly, in the case of an fcc lattice of homogeneous dielectric spheres, we
reproduce the main features of the spectrum obtained by the plane wave method,
namely that for a sufficiently high dielectric contrast a full gap opens in the
spectrum between the eights and ninth bands if the dielectric constant
$\epsilon_s$ of spheres is lower than the dielectric constant $\epsilon_b$ of
the background medium. If $\epsilon_s> \epsilon_b$, no gap is found in the
spectrum. The maximal value of the relative band-gap width approaches 14% in
the close-packed case and decreases monotonically as the filling fraction
decreases. The lowest dielectric contrast $\epsilon_b/\epsilon_s$ for which a
full gap opens in the spectrum is determined to be 8.13. Eventually, in the
case of an fcc lattice of coated spheres, we demonstrate that a suitable
coating can enhance gap widths by as much as 50%.