We associate to an arbitrary $\mathbb Z$-gradation of the Lie algebra of a
Lie group a system of Riccati-type first order differential equations. The
particular cases under consideration are the ordinary Riccati and the matrix
Riccati equations. The multidimensional extension of these equations is given.
The generalisation of the associated Redheffer--Reid differential systems
appears in a natural way. The connection between the Toda systems and the
Riccati-type equations in lower and higher dimensions is established. Within
this context the integrability problem for those equations is studied. As an
illustration, some examples of the integrable multidimensional Riccati-type
equations related to the maximally nonabelian Toda systems are given.