Chaos and Non-Archimedean metric in the Bernoulli map
San-Martin, Jesus ; Sotolongo-Costa, Oscar
arXiv, 9807013 / Harvested from arXiv
Ultrametric concepts are applied to the Bernoulli map, showing the adequateness of the non-Archimedean metrics to describe in a simple and direct way the chaotic properties of this map. Lyapunov exponent and Kolmogorov entropy appear to find a simpler explanation. A p-adic time emerges as a natural consequence of the ultrametric properties of the map.
Publié le : 1998-07-12
Classification:  Mathematical Physics,  Mathematics - Dynamical Systems
@article{9807013,
     author = {San-Martin, Jesus and Sotolongo-Costa, Oscar},
     title = {Chaos and Non-Archimedean metric in the Bernoulli map},
     journal = {arXiv},
     volume = {1998},
     number = {0},
     year = {1998},
     language = {en},
     url = {http://dml.mathdoc.fr/item/9807013}
}
San-Martin, Jesus; Sotolongo-Costa, Oscar. Chaos and Non-Archimedean metric in the Bernoulli map. arXiv, Tome 1998 (1998) no. 0, . http://gdmltest.u-ga.fr/item/9807013/