A noncommutative-geometric interpretation of the resolution of equivariant instanton moduli spaces
Lazaroiu, C. I.
arXiv, 9805132 / Harvested from arXiv
We generalize the recently proposed noncommutative ADHM construction to the case of $\Gamma$-equivariant instantons over $\R^4$, with $\Gamma$ a Kleinian group. We show that a certain form of the inhomogeneous ADHM equations describes instantons over a noncommutative deformation of the Kleinian orbifold $\C^2/\Gamma$ and we discuss the relation of this with Nakajima's description of instantons over ALE spaces. In particular, we obtain a noncommutative interpretation of the minimal resolution of Kleinian singularities.
Publié le : 1998-05-20
Classification:  High Energy Physics - Theory,  Mathematical Physics
@article{9805132,
     author = {Lazaroiu, C. I.},
     title = {A noncommutative-geometric interpretation of the resolution of
  equivariant instanton moduli spaces},
     journal = {arXiv},
     volume = {1998},
     number = {0},
     year = {1998},
     language = {en},
     url = {http://dml.mathdoc.fr/item/9805132}
}
Lazaroiu, C. I. A noncommutative-geometric interpretation of the resolution of
  equivariant instanton moduli spaces. arXiv, Tome 1998 (1998) no. 0, . http://gdmltest.u-ga.fr/item/9805132/