From Ramond Fermions to Lame Equations for Orthogonal Curvilinear Coordinates
Manas, Manuel ; Alonso, Luis Martinez
arXiv, 9805010 / Harvested from arXiv
We show how Ramond free neutral Fermi fields lead to a $\tau$-function theory of BKP type which describes iso-orthogonal deformations of systems of ortogonal curvilinear coordinates. We also provide a vertex operator representation for the classical Ribaucour transformation.
Publié le : 1998-05-20
Classification:  Nonlinear Sciences - Exactly Solvable and Integrable Systems,  High Energy Physics - Theory,  Mathematical Physics,  Mathematics - Differential Geometry
@article{9805010,
     author = {Manas, Manuel and Alonso, Luis Martinez},
     title = {From Ramond Fermions to Lame Equations for Orthogonal Curvilinear
  Coordinates},
     journal = {arXiv},
     volume = {1998},
     number = {0},
     year = {1998},
     language = {en},
     url = {http://dml.mathdoc.fr/item/9805010}
}
Manas, Manuel; Alonso, Luis Martinez. From Ramond Fermions to Lame Equations for Orthogonal Curvilinear
  Coordinates. arXiv, Tome 1998 (1998) no. 0, . http://gdmltest.u-ga.fr/item/9805010/