It is shown that the family of deformed algebras ${\cal
U}_\lambda(iso_{\omega_2... \omega_N}(N))$ has a different bicrossproduct
structure for each $\omega_a=0$ in analogy to the undeformed case.
@article{9804084,
author = {Bueno, J. C. Perez},
title = {On the bicrossproduct structures for the ${\cal
U}\_\lambda(iso\_{\omega\_2... \omega\_N}(N))$ family of algebras},
journal = {arXiv},
volume = {1998},
number = {0},
year = {1998},
language = {en},
url = {http://dml.mathdoc.fr/item/9804084}
}
Bueno, J. C. Perez. On the bicrossproduct structures for the ${\cal
U}_\lambda(iso_{\omega_2... \omega_N}(N))$ family of algebras. arXiv, Tome 1998 (1998) no. 0, . http://gdmltest.u-ga.fr/item/9804084/