We establish a duality between the free massless relativistic particle in d
dimensions, the non-relativistic hydrogen atom (1/r potential) in (d-1) space
dimensions, and the harmonic oscillator in (d-2) space dimensions with its mass
given as the lightcone momentum of an additional dimension. The duality is in
the sense that the classical action of these systems are gauge fixed forms of
the same worldline gauge theory action at the classical level, and they are all
described by the same unitary representation of the conformal group SO(d,2) at
the quantum level. The worldline action has a gauge symmetry Sp(2) which treats
canonical variables (x,p) as doublets and exists only with a target spacetime
that has d spacelike dimensions and two timelike dimensions. This spacetime is
constrained due to the gauge symmetry, and the various dual solutions
correspond to solutions of the constraints with different topologies. For
example, for the H-atom the two timelike dimensions X^{0'},X^{0} live on a
circle. The model provides an example of how realistic physics can be viewed as
existing in a larger covariant space that includes two timelike coordinates,
and how the covariance in the larger space unifies different looking physics
into a single system.