A Rigorous Path Integral Construction in any Dimension
Dynin, Alexander
arXiv, 9802058 / Harvested from arXiv
We propose a new rigorous time-slicing construction of the phase space Path Integrals for propagators both in Quantum Mechanics and Quantum Field Theory for a fairly general class of quantum observables (e.g. the Schroedinger hamiltonians with smooth scalar potentials of any power growth). Moreover we allow time-dependent hamiltonians and a great variety of discretizations, in particular, the standard, Weyl, and normal ones.
Publié le : 1998-02-11
Classification:  Mathematics - Functional Analysis,  Condensed Matter,  High Energy Physics - Phenomenology,  High Energy Physics - Theory,  Mathematical Physics,  Mathematics - Analysis of PDEs,  Quantum Physics,  81C35,  35S10
@article{9802058,
     author = {Dynin, Alexander},
     title = {A Rigorous Path Integral Construction in any Dimension},
     journal = {arXiv},
     volume = {1998},
     number = {0},
     year = {1998},
     language = {en},
     url = {http://dml.mathdoc.fr/item/9802058}
}
Dynin, Alexander. A Rigorous Path Integral Construction in any Dimension. arXiv, Tome 1998 (1998) no. 0, . http://gdmltest.u-ga.fr/item/9802058/