We investigate closed ideals in the Grassmann algebra serving as bases of
Lie-invariant geometric objects studied before by E. Cartan. Especially, the E.
Cartan theory is enlarged for Lax integrable nonlinear dynamical systems to be
treated in the frame work of the Wahlquist Estabrook prolongation structures on
jet-manifolds and Cartan-Ehresmann connection theory on fibered spaces. General
structure of integrable one-forms augmenting the two-forms associated with a
closed ideal in the Grassmann algebra is studied in great detail. An effective
Maurer-Cartan one-forms construction is suggested that is very useful for
applications. As an example of application the developed Lie-invariant
geometric object theory for the Burgers nonlinear dynamical system is
considered having given rise to finding an explicit form of the associated Lax
type representation.