On a Generalized Oscillator: Invariance Algebra and Interbasis Expansions
Hakobyan, Y. M. ; Kibler, M. ; Pogosyan, G. S. ; Sissakian, A. N.
arXiv, 9712014 / Harvested from arXiv
This article deals with a quantum-mechanical system which generalizes the ordinary isotropic harmonic oscillator system. We give the coefficients connecting the polar and Cartesian bases for D=2 and the coefficients connecting the Cartesian and cylindrical bases as well as the cylindrical and spherical bases for D=3. These interbasis expansion coefficients are found to be analytic continuations to real values of their arguments of the Clebsch-Gordan coefficients for the group SU(2). For D=2, the superintegrable character for the generalized oscillator system is investigated from the points of view of a quadratic invariance algebra.
Publié le : 1997-12-05
Classification:  Quantum Physics,  Mathematical Physics,  Physics - Atomic and Molecular Clusters,  Physics - Atomic Physics,  Physics - Chemical Physics
@article{9712014,
     author = {Hakobyan, Y. M. and Kibler, M. and Pogosyan, G. S. and Sissakian, A. N.},
     title = {On a Generalized Oscillator: Invariance Algebra and Interbasis
  Expansions},
     journal = {arXiv},
     volume = {1997},
     number = {0},
     year = {1997},
     language = {en},
     url = {http://dml.mathdoc.fr/item/9712014}
}
Hakobyan, Y. M.; Kibler, M.; Pogosyan, G. S.; Sissakian, A. N. On a Generalized Oscillator: Invariance Algebra and Interbasis
  Expansions. arXiv, Tome 1997 (1997) no. 0, . http://gdmltest.u-ga.fr/item/9712014/