Processing math: 0%
Quantization on a Lie group: Higher-order Polarizations
Aldaya, V. ; Guerrero, J. ; Marmo, G.
arXiv, 9710002 / Harvested from arXiv
Contents * Introduction -- Why S^1-extended phase space? -- Why central extensions of classical symmetries? * Central extension \Gt of a group G -- Group cohomology -- Cohomology and contractions: Pseudo-cohomology -- Principal bundle with connection (\Gtm,\Theta) * Group Approach to Quantization -- U(1)-quantization -- Non-horizontal polarizations * Simple examples -- The abelian group R^{k} -- The semisimple group SU(2) * Algebraic anomalies -- Higher-order polarizations -- The Schr\"odinger group and Quantum Optics -- The Virasoro group and String Theory
Publié le : 1997-10-03
Classification:  Mathematical Physics,  High Energy Physics - Theory
@article{9710002,
     author = {Aldaya, V. and Guerrero, J. and Marmo, G.},
     title = {Quantization on a Lie group: Higher-order Polarizations},
     journal = {arXiv},
     volume = {1997},
     number = {0},
     year = {1997},
     language = {en},
     url = {http://dml.mathdoc.fr/item/9710002}
}
Aldaya, V.; Guerrero, J.; Marmo, G. Quantization on a Lie group: Higher-order Polarizations. arXiv, Tome 1997 (1997) no. 0, . http://gdmltest.u-ga.fr/item/9710002/