Contents
* Introduction
-- Why S^1-extended phase space?
-- Why central extensions of classical symmetries?
* Central extension \Gt of a group G
-- Group cohomology
-- Cohomology and contractions: Pseudo-cohomology
-- Principal bundle with connection (\Gtm,\Theta)
* Group Approach to Quantization
-- U(1)-quantization
-- Non-horizontal polarizations
* Simple examples
-- The abelian group R^{k}
-- The semisimple group SU(2)
* Algebraic anomalies
-- Higher-order polarizations
-- The Schr\"odinger group and Quantum Optics
-- The Virasoro group and String Theory