Small oscillations of a chiral Gross-Neveu system
Natti, P. L. ; Piza, A. F. R. de Toledo
arXiv, 9704188 / Harvested from arXiv
We study the small oscillations regime (RPA approximation) of the time-dependent mean-field equations, obtained in a previous work, which describe the time evolution of one-body dynamical variables of a uniform Chiral Gross-Neveu system. In this approximation we obtain an analytical solution for the time evolution of the one-body dynamical variables. The two-fermion physics can be explored through this solution. The condition for the existence of bound states is examined.
Publié le : 1997-04-25
Classification:  High Energy Physics - Theory,  Mathematical Physics
@article{9704188,
     author = {Natti, P. L. and Piza, A. F. R. de Toledo},
     title = {Small oscillations of a chiral Gross-Neveu system},
     journal = {arXiv},
     volume = {1997},
     number = {0},
     year = {1997},
     language = {en},
     url = {http://dml.mathdoc.fr/item/9704188}
}
Natti, P. L.; Piza, A. F. R. de Toledo. Small oscillations of a chiral Gross-Neveu system. arXiv, Tome 1997 (1997) no. 0, . http://gdmltest.u-ga.fr/item/9704188/