Local U(2,2) Symmetry in Relativistic Quantum Mechanics
Finster, Felix
arXiv, 9703083 / Harvested from arXiv
Local gauge freedom in relativistic quantum mechanics is derived from a measurement principle for space and time. For the Dirac equation, one obtains local U(2,2) gauge transformations acting on the spinor index of the wave functions. This local U(2,2) symmetry allows a unified description of electrodynamics and general relativity as a classical gauge theory.
Publié le : 1997-03-11
Classification:  High Energy Physics - Theory,  Mathematical Physics,  Mathematics - Differential Geometry
@article{9703083,
     author = {Finster, Felix},
     title = {Local U(2,2) Symmetry in Relativistic Quantum Mechanics},
     journal = {arXiv},
     volume = {1997},
     number = {0},
     year = {1997},
     language = {en},
     url = {http://dml.mathdoc.fr/item/9703083}
}
Finster, Felix. Local U(2,2) Symmetry in Relativistic Quantum Mechanics. arXiv, Tome 1997 (1997) no. 0, . http://gdmltest.u-ga.fr/item/9703083/