In this paper, we study Lie superalgebras of $2\times 2$ matrix-valued
first-order differential operators on the complex line. We first completely
classify all such superalgebras of finite dimension. Among the
finite-dimensional superalgebras whose odd subspace is nontrivial, we find
those admitting a finite-dimensional invariant module of smooth vector-valued
functions, and classify all the resulting finite-dimensional modules. The
latter Lie superalgebras and their modules are the building blocks in the
construction of QES quantum mechanical models for spin 1/2 particles in one
dimension.