On summability of distributions and spectral geometry
Estrada, R. ; Gracia-Bondia, J. M. ; Varilly, J. C.
arXiv, 9702001 / Harvested from arXiv
Modulo the moment asymptotic expansion, the Cesaro and parametric behaviours of distributions at infinity are equivalent. On the strength of this result, we construct the asymptotic analysis for spectral densities, arising from elliptic pseudodifferential operators. We show how Cesaro developments lead to efficient calculations of the expansion coefficients of counting number functionals and Green functions. The bosonic action functional proposed by Chamseddine and Connes can more generally be validated as a Cesaro asymptotic development.
Publié le : 1997-02-01
Classification:  Mathematics - Functional Analysis,  High Energy Physics - Theory,  Mathematical Physics,  Mathematics - Operator Algebras
@article{9702001,
     author = {Estrada, R. and Gracia-Bondia, J. M. and Varilly, J. C.},
     title = {On summability of distributions and spectral geometry},
     journal = {arXiv},
     volume = {1997},
     number = {0},
     year = {1997},
     language = {en},
     url = {http://dml.mathdoc.fr/item/9702001}
}
Estrada, R.; Gracia-Bondia, J. M.; Varilly, J. C. On summability of distributions and spectral geometry. arXiv, Tome 1997 (1997) no. 0, . http://gdmltest.u-ga.fr/item/9702001/