Drinfel'd Twists and Algebraic Bethe Ansatz
Maillet, J. M. ; de Santos, J. Sanchez
arXiv, 9612012 / Harvested from arXiv
We study representation theory of Drinfel'd twists, in terms of what we call F matrices, associated to finite dimensional irreducible modules of quantum affine algebras, and which factorize the corresponding (unitary) R matrices. We construct explicitly such factorizing F matrices for irreducible tensor products of the fundamental representations of the quantum affine algebra sl2 and its associated Yangian. We then apply these constructions to the XXX and XXZ quantum spins chains of finite length in the framework of the Algebraic Bethe Ansatz.
Publié le : 1996-12-10
Classification:  Mathematics - Quantum Algebra,  Condensed Matter - Statistical Mechanics,  High Energy Physics - Theory,  Mathematical Physics,  82B23, 81R50, 16W30, 17B37
@article{9612012,
     author = {Maillet, J. M. and de Santos, J. Sanchez},
     title = {Drinfel'd Twists and Algebraic Bethe Ansatz},
     journal = {arXiv},
     volume = {1996},
     number = {0},
     year = {1996},
     language = {en},
     url = {http://dml.mathdoc.fr/item/9612012}
}
Maillet, J. M.; de Santos, J. Sanchez. Drinfel'd Twists and Algebraic Bethe Ansatz. arXiv, Tome 1996 (1996) no. 0, . http://gdmltest.u-ga.fr/item/9612012/