We investigate oscillatory properties of the perturbedhalf-linear Euler differential equation$$\bigl(\Phi(x')\bigr)'+\frac{\gamma_p}{t^p}\Phi(x)=0,\quad\Phi(x):=|x|^{p-2}x,\ \gamma_p:=\left(\frac{p-1}{p}\right)^p.$$A perturbation is also allowed in the coefficient involvingderivative.
@article{96, title = {Half-linear Euler differential equations in the critical case}, journal = {Tatra Mountains Mathematical Publications}, volume = {49}, year = {2011}, doi = {10.2478/tatra.v48i0.96}, language = {EN}, url = {http://dml.mathdoc.fr/item/96} }
Došlý, Ondřej; Haladová, Hana. Half-linear Euler differential equations in the critical case. Tatra Mountains Mathematical Publications, Tome 49 (2011) . doi : 10.2478/tatra.v48i0.96. http://gdmltest.u-ga.fr/item/96/