We investigate oscillatory properties of the perturbedhalf-linear Euler differential equation$$\bigl(\Phi(x')\bigr)'+\frac{\gamma_p}{t^p}\Phi(x)=0,\quad\Phi(x):=|x|^{p-2}x,\ \gamma_p:=\left(\frac{p-1}{p}\right)^p.$$A perturbation is also allowed in the coefficient involvingderivative.
@article{96,
title = {Half-linear Euler differential equations in the critical case},
journal = {Tatra Mountains Mathematical Publications},
volume = {49},
year = {2011},
doi = {10.2478/tatra.v48i0.96},
language = {EN},
url = {http://dml.mathdoc.fr/item/96}
}
Došlý, Ondřej; Haladová, Hana. Half-linear Euler differential equations in the critical case. Tatra Mountains Mathematical Publications, Tome 49 (2011) . doi : 10.2478/tatra.v48i0.96. http://gdmltest.u-ga.fr/item/96/