Fredholm determinants and the mKdV/sinh-Gordon hierarchies
Tracy, Craig A. ; Widom, Harold
arXiv, 9506006 / Harvested from arXiv
For a particular class of integral operators $K$ we show that the quantity \[\ph:=\log \det (I+K)-\log \det (I-K)\] satisfies both the integrated mKdV hierarchy and the sinh-Gordon hierarchy. This proves a conjecture of Zamolodchikov.
Publié le : 1995-07-06
Classification:  Nonlinear Sciences - Exactly Solvable and Integrable Systems,  High Energy Physics - Theory,  Mathematical Physics
@article{9506006,
     author = {Tracy, Craig A. and Widom, Harold},
     title = {Fredholm determinants and the mKdV/sinh-Gordon hierarchies},
     journal = {arXiv},
     volume = {1995},
     number = {0},
     year = {1995},
     language = {en},
     url = {http://dml.mathdoc.fr/item/9506006}
}
Tracy, Craig A.; Widom, Harold. Fredholm determinants and the mKdV/sinh-Gordon hierarchies. arXiv, Tome 1995 (1995) no. 0, . http://gdmltest.u-ga.fr/item/9506006/