For a particular class of integral operators $K$ we show that the quantity
\[\ph:=\log \det (I+K)-\log \det (I-K)\] satisfies both the integrated mKdV
hierarchy and the sinh-Gordon hierarchy. This proves a conjecture of
Zamolodchikov.
Publié le : 1995-07-06
Classification:
Nonlinear Sciences - Exactly Solvable and Integrable Systems,
High Energy Physics - Theory,
Mathematical Physics
@article{9506006,
author = {Tracy, Craig A. and Widom, Harold},
title = {Fredholm determinants and the mKdV/sinh-Gordon hierarchies},
journal = {arXiv},
volume = {1995},
number = {0},
year = {1995},
language = {en},
url = {http://dml.mathdoc.fr/item/9506006}
}
Tracy, Craig A.; Widom, Harold. Fredholm determinants and the mKdV/sinh-Gordon hierarchies. arXiv, Tome 1995 (1995) no. 0, . http://gdmltest.u-ga.fr/item/9506006/