The Hamiltonian structure of the monodromy preserving deformation equations
of Jimbo {\it et al } is explained in terms of parameter dependent pairs of
moment maps from a symplectic vector space to the dual spaces of two different
loop algebras. The nonautonomous Hamiltonian systems generating the
deformations are obtained by pulling back spectral invariants on Poisson
subspaces consisting of elements that are rational in the loop parameter and
identifying the deformation parameters with those determining the moment maps.
This construction is shown to lead to ``dual'' pairs of matrix differential
operators whose monodromy is preserved under the same family of deformations.
As illustrative examples, involving discrete and continuous reductions, a
higher rank generalization of the Hamiltonian equations governing the
correlation functions for an impenetrable Bose gas is obtained, as well as dual
pairs of isomonodromy representations for the equations of the Painleve
transcendents $P_{V}$ and $P_{VI}$.