Petrie polygons, Fibonacci sequences and Farey maps
Singerman, David ; Strudwick, James
ARS MATHEMATICA CONTEMPORANEA, Tome 12 (2016), / Harvested from ARS MATHEMATICA CONTEMPORANEA

We consider the regular triangular maps corresponding to the principal congruence subgroups Γ (n) of the classical modular group. We relate the sizes of the Petrie polygons on these maps to the periods of reduced Fibonacci sequences.

Publié le : 2016-01-01
DOI : https://doi.org/10.26493/1855-3974.864.e9b
@article{864,
     title = {Petrie polygons, Fibonacci sequences and Farey maps},
     journal = {ARS MATHEMATICA CONTEMPORANEA},
     volume = {12},
     year = {2016},
     doi = {10.26493/1855-3974.864.e9b},
     language = {EN},
     url = {http://dml.mathdoc.fr/item/864}
}
Singerman, David; Strudwick, James. Petrie polygons, Fibonacci sequences and Farey maps. ARS MATHEMATICA CONTEMPORANEA, Tome 12 (2016) . doi : 10.26493/1855-3974.864.e9b. http://gdmltest.u-ga.fr/item/864/