For a simple graph G on n vertices, the signless Laplacian Estrada index is defined as SLEE(G) = ∑ i = 1neqi, where q1, q2, …, qn are the eigenvalues of the signless Laplacian matrix of G. In this paper, the unique graph on n vertices with maximum signless Laplacian Estrada index is determined among graphs with given number of cut edges, pendent vertices, (vertex) connectivity and edge connectivity, respectively.
@article{838, title = {On maximum signless Laplacian Estrada index of graphs with given parameters}, journal = {ARS MATHEMATICA CONTEMPORANEA}, volume = {12}, year = {2016}, doi = {10.26493/1855-3974.838.8fd}, language = {EN}, url = {http://dml.mathdoc.fr/item/838} }
Ellahi, Hamid Reza; Fath-Tabar, Gholam Hossein; Gholami, Ahmad; Nasiri, Ramin. On maximum signless Laplacian Estrada index of graphs with given parameters. ARS MATHEMATICA CONTEMPORANEA, Tome 12 (2016) . doi : 10.26493/1855-3974.838.8fd. http://gdmltest.u-ga.fr/item/838/