Realistic plant models are important for leaf area and plant volume estimation, reconstruction of growth canopies, structure generation of the plant, reconstruction of leaf surfaces and agrichemical spray droplet modelling. This article investigates several different scanning devices for obtaining a three dimensional digitisation of plant leaves with a point cloud resolution of 200--500 \(\mu\)m. The devices tested were a Roland MDX-20, Microsoft Kinect, Roland LPX-250, Picoscan and Artec S. The applicability of each of these devices for scanning plant leaves is discussed. The most suitable tested digitisation device for scanning plant leaves is the Artec S scanner. References J. Cai and S. Miklavcic. Automated extraction of three-dimensional cereal plant structures from two-dimensional orthographic images. IET Image Process., 6:687–696, 2012. doi:10.1049/iet-ipr.2011.0281 J. Chambelland, M. Dassot, B. Adam, N. Dones, P. Balandier, A. Marquier, M. Saudreau, G. Sonohat, and H. Sinoquet. A double-digitising method for building 3D virtual trees with non-planar leaves: application to the morphology and light-capture properties of young beech trees (Fagus sylvatica). Funct. Plant Biol., 35:1059–1069, 2008. doi:10.1071/FP08051 G. Dorr, J. Hanan, S. Adkins, A. Hewitt, C. O'Donnell, and B. Noller. Spray deposition on plant surfaces: a modelling approach. Funct. Plant Biol., 35:988–996, 2008. doi:10.1071/FP08056 G. J. Dorr, D. Kempthorne, L. C. Mayo, W. A. Forster, J. A. Zabkiewicz, S. W. McCue, J. A. Belward, I. W. Turner, and J. Hanan. Towards a model of spray-canopy interactions : interception, shatter, bounce and retention of droplets on horizontal leaves. Ecol. Model., 2013. doi:10.1016/j.ecolmodel.2013.11.002 W. A. Forster, M. O. Kimberlay, and J. A. Zabkiewicz. A universal spray droplet adhesion model. T. ASAE, 48:1321–1330, 2005. http://cat.inist.fr/?aModele=afficheN&cpsidt=17067456 K. Koch, A. Dommisse, and W. Barthlott. Chemistry and crystal growth of plant wax tubules of lotus (Nelumbo nucifera) and nasturtium (Tropaeolum majus) leaves on technical substrates. Cryst. Growth Des., 6:2571–2578, 2006. doi:10.1021/cg060035w Y.-C. Liu and A.-S. Chiang. High-resolution confocal imaging and three-dimensional rendering. Methods, 30:86–93, 2003. doi:10.1016/S1046-2023(03)00010-0 B. I. Loch. Surface Fitting for the Modelling of Plant Leaves Ph.D. Thesis. PhD thesis, University of Queensland, 2004. http://espace.library.uq.edu.au/view/UQ:158054 I. Moorthy, J. R. Miller, B. Hu, J. Chen, and Q. Li. Retrieving crown leaf area index from an individual tree using ground-based lidar data. Can. J. Remote Sens., 34:320–332, 2008. doi:10.5589/m08-027 K. Omasa, F. Hosoi, and A. Konishi. 3D lidar imaging for detecting and understanding plant responses and canopy structure. J. Exp. Bot., 58:881–898, 2007. doi:10.1093/jxb/erl142 K. Omasa, A. Konishi, H. Tamura, and F. Hosoi. 3D confocal laser scanning microscopy for the analysis of chlorophyll fluorescence parameters of chloroplasts in intact leaf tissues. Plant Cell Physiol., 50:90–105, 2009. doi:10.1093/pcp/pcn174 M. N. Oqielat, I. W. Turner, J. A. Belward, and S. W. McCue. Modelling water droplet movement on a leaf surface. Math. Comput. Simulat., 81:1553–1571, 2011. doi:10.1016/j.matcom.2010.09.003 A. Paproki, J. Fripp, O. Salvado, X. Sirault, S. Berry, and R. Furbank. Automated 3D segmentation and analysis of cotton plants. In Digital Image Computing Techniques and Applications (DICTA), 2011 International Conference on, pages 555–560, 2011. doi:10.1109/DICTA.2011.99 J. Phattaralerphong and H. Sinoquet. A method for 3D reconstruction of tree crown volume from photographs: assessment with 3D-digitized plants. Tree Physiol., 25:1229–1242, 2005. doi:10.1093/treephys/25.10.1229 L. Quan, P. Tan, G. Zeng, L. Yuan, J. Wang, and S. B. Kang. Image-based plant modeling. ACM T. Graphic., 25:599–604, 2006. doi:10.1145/1141911.1141929 A. Ritter, E. Wagner, and M. G. Holmes. Light quantity and quality interactions in the control of elongation growth in light-grown Chenopodium rubrum L. seedlings. Planta, 153:556–560, 1981. doi:10.1007/BF00385541 R. Sanz-Cortiella, J. Llorens-Calveras, A. Escola, J. Arno-Satorra, M. Ribes-Dasi, J. Masip-Vilalta, F. Camp, F. Gracia-Aguila, F. Solanelles-Batlle, S. Planas-DeMarti, T. Palleja-Cabre, J. Palacin-Roca, E. Gregorio-Lopez, I. Del-Moral-Martinez, and J. R. Rosell-Polo. Innovative lidar 3D dynamic measurement system to estimate fruit-tree leaf area. Sensors, 11:5769–5791, 2011. doi:10.3390/s110605769 I. Shlyakhter, M. Rozenoer, J. Dorsey, and S. Teller. Reconstructing 3D tree models from instrumented photographs. IEEE Comput. Graph., 21:53–61, 2001. doi:10.1109/38.920627 R. L. Vander Wal, G. M. Berger, S. D. Mozes. The splash/non-splash boundary upon a dry surface and thin fluid film. Exp. Fluids, 40:53–59, 2002. doi:10.1007/s00348-005-0045-1 T. Watanabe, J. S. Hanan, P. M. Room, T. Hasegawa, H. Nakagawa, and W. akahashi. Rice morphogenesis and plant architecture: Measurement, specification and the reconstruction of structural development by 3D architectural modelling. Ann. Bot.-London, 95:1131–1143, 2005. doi:10.1093/aob/mci136
@article{7850, title = {3D digitisation of plant leaves}, journal = {ANZIAM Journal}, volume = {55}, year = {2014}, doi = {10.21914/anziamj.v55i0.7850}, language = {EN}, url = {http://dml.mathdoc.fr/item/7850} }
Kempthorne, Daryl Matthew; Barry, Mark; Zabkiewicz, Jerzy A; Young, Joseph. 3D digitisation of plant leaves. ANZIAM Journal, Tome 55 (2014) . doi : 10.21914/anziamj.v55i0.7850. http://gdmltest.u-ga.fr/item/7850/