We introduce the notion of Hausdorff extension of an arbitrary set X and we study the connections with the Stone-Cech compactification \beta X of the discrete space X. We characterize those Hausdorff extensions that satisfy the “transfer principle” of nonstandard analysis, and we investigate the consistency strength of their existence.
@article{7519, title = {Hausdorff Nonstandard Extensions - doi: 10.5269/bspm.v20i1-2.7519}, journal = {Boletim da Sociedade Paranaense de Matem\'atica}, volume = {23}, year = {2009}, doi = {10.5269/bspm.v20i1-2.7519}, language = {EN}, url = {http://dml.mathdoc.fr/item/7519} }
Benci, Vieri; Forti, Marco; Di Nasso, Mauro. Hausdorff Nonstandard Extensions - doi: 10.5269/bspm.v20i1-2.7519. Boletim da Sociedade Paranaense de Matemática, Tome 23 (2009) . doi : 10.5269/bspm.v20i1-2.7519. http://gdmltest.u-ga.fr/item/7519/