In this paper, we discuss the existence of multiple positive solutionsfor the fourth-order boundary value problemu^{(4)}(t) = f(t, u(t), u''(t)), 0 < t < 1,u(0) = u(1) = u''(0) = u''(1) = 0,where f : [0, 1] × [0,1) \rightarrow [0,1) is continuous. Existence theorems are established via the theory of fixed point index in cones.
@article{7503, title = {Multiple Positive Solutions for a Fourth-order Boundary Value Problem - doi: 10.5269/bspm.v21i1-2.7503}, journal = {Boletim da Sociedade Paranaense de Matem\'atica}, volume = {23}, year = {2009}, doi = {10.5269/bspm.v21i1-2.7503}, language = {EN}, url = {http://dml.mathdoc.fr/item/7503} }
Zhu, Yaoliang; Weng, Peixuan. Multiple Positive Solutions for a Fourth-order Boundary Value Problem - doi: 10.5269/bspm.v21i1-2.7503. Boletim da Sociedade Paranaense de Matemática, Tome 23 (2009) . doi : 10.5269/bspm.v21i1-2.7503. http://gdmltest.u-ga.fr/item/7503/