This brief review presents most important results of the authors dealing with mathematical models for the nonstationary two-phase flow of a dusty gas. We do not aim to analyze physical justifications and numerical simulations of dusty gas flows; our attention is focused on the qualitative properties of these models, such as local and global in time well-posedness, uniqueness and asymptotic behavior ofsolutions.
@article{7492, title = {Mathematical Problems For A Dusty Gas Flow - doi: 10.5269/bspm.v22i1.7492}, journal = {Boletim da Sociedade Paranaense de Matem\'atica}, volume = {23}, year = {2009}, doi = {10.5269/bspm.v22i1.7492}, language = {EN}, url = {http://dml.mathdoc.fr/item/7492} }
Doronin, Gleb; Larkin, Nikolai A. Mathematical Problems For A Dusty Gas Flow - doi: 10.5269/bspm.v22i1.7492. Boletim da Sociedade Paranaense de Matemática, Tome 23 (2009) . doi : 10.5269/bspm.v22i1.7492. http://gdmltest.u-ga.fr/item/7492/