A gradient system of total variation is considered for a mapping from the unit disk to the unit sphere in R3. For a class of initial data it is shown that a solution of its Dirichlet problem loses its smoothness in finite time.
@article{7491,
title = {On breakdown of solutions of a constrained gradient system of total variation - doi: 10.5269/bspm.v22i1.7491},
journal = {Boletim da Sociedade Paranaense de Matem\'atica},
volume = {23},
year = {2009},
doi = {10.5269/bspm.v22i1.7491},
language = {EN},
url = {http://dml.mathdoc.fr/item/7491}
}
Giga, Yoshikazu; Kuroda, Hirotoshi. On breakdown of solutions of a constrained gradient system of total variation - doi: 10.5269/bspm.v22i1.7491. Boletim da Sociedade Paranaense de Matemática, Tome 23 (2009) . doi : 10.5269/bspm.v22i1.7491. http://gdmltest.u-ga.fr/item/7491/