The Homotopy Type of Seiberg-Witten Configuration Space - doi: 10.5269/bspm.v22i2.7482
Doria, Celso M.
Boletim da Sociedade Paranaense de Matemática, Tome 23 (2009), / Harvested from Portal de Periódicos da UEM

Let X be a closed smooth 4-manifold. In the Theory of the Seiberg-Witten Equations, the configuration space is A{\alpha}\times g_{\alpha} \Gamma(S_{\alpha}^+ ), where A_{\alpha} is definedas the space of u_1-connections on a complex line bundle over X, \Gamma(S_{\alpha}^+) is the space of sections of the positive complex spinor bundle over X and G_{\alpha} is the gauge group.It is shown that A_{\alpha} \times g_{\alpha}\Gamma(S_{\alpha}^+) has the same homotopic type of the Jacobian Torus T^{b1(X)} = \frac{H1(X;R)}{H1(X; Z)} ;where b_1(X) = dim_{R}H^1(X;R).

Publié le : 2009-01-01
DOI : https://doi.org/10.5269/bspm.v22i2.7482
@article{7482,
     title = {The Homotopy Type of Seiberg-Witten Configuration Space - doi: 10.5269/bspm.v22i2.7482},
     journal = {Boletim da Sociedade Paranaense de Matem\'atica},
     volume = {23},
     year = {2009},
     doi = {10.5269/bspm.v22i2.7482},
     language = {EN},
     url = {http://dml.mathdoc.fr/item/7482}
}
Doria, Celso M. The Homotopy Type of Seiberg-Witten Configuration Space - doi: 10.5269/bspm.v22i2.7482. Boletim da Sociedade Paranaense de Matemática, Tome 23 (2009) . doi : 10.5269/bspm.v22i2.7482. http://gdmltest.u-ga.fr/item/7482/