We consider the equation \Deltau = 0 posed in Q := (0;+\infty) \times \Omega ; \Omega:=\{x = (x'; x_ N)/ x' \in R^{N-1}; x_N > 0\}; with the dynamical boundary conditionB(t, x',0)u_{tt} + A(t, x',0)u_t - u_{x_N} \geq D(t; x',0; 0) |u|^q on \Sigma := (0;\infty) \times R^{N-1} \times \{0\} and give conditions on the coefficient functions A(t, x',0); B(t, x',0; 0) and D(t, x'; 0) for the nonexistence of global solutions.
@article{7475, title = {Nonexistence of Global Solutions to an Elliptic Equation with a Dynamical Boundary Condition - doi: 10.5269/bspm.v22i2.7475}, journal = {Boletim da Sociedade Paranaense de Matem\'atica}, volume = {23}, year = {2009}, doi = {10.5269/bspm.v22i2.7475}, language = {EN}, url = {http://dml.mathdoc.fr/item/7475} }
Kirane, Mokhtar; NABANA, Eric; Pohozaev, Stanislav I. Nonexistence of Global Solutions to an Elliptic Equation with a Dynamical Boundary Condition - doi: 10.5269/bspm.v22i2.7475. Boletim da Sociedade Paranaense de Matemática, Tome 23 (2009) . doi : 10.5269/bspm.v22i2.7475. http://gdmltest.u-ga.fr/item/7475/