Mathematical analysis of PDE systems which govern fluid-structure interactive phenomena - doi: 10.5269/bspm.v25i1-2.7422
Avalos, George ; Triggiani, Roberto
Boletim da Sociedade Paranaense de Matemática, Tome 23 (2009), / Harvested from Portal de Periódicos da UEM

In this paper, we review and comment upon recently derived results for time dependent partial differential equation (PDE) models, which have been used to describe the various fluid-structure interactions which occur in nature. For these fluid-structure PDEs, this survey is particularly focused on the authors' results of (i) semigroup wellposedness, (ii) stability, and (iii) backward uniqueness.

Publié le : 2009-01-01
DOI : https://doi.org/10.5269/bspm.v25i1-2.7422
@article{7422,
     title = {Mathematical analysis of PDE systems which govern fluid-structure interactive phenomena - doi: 10.5269/bspm.v25i1-2.7422},
     journal = {Boletim da Sociedade Paranaense de Matem\'atica},
     volume = {23},
     year = {2009},
     doi = {10.5269/bspm.v25i1-2.7422},
     language = {EN},
     url = {http://dml.mathdoc.fr/item/7422}
}
Avalos, George; Triggiani, Roberto. Mathematical analysis of PDE systems which govern fluid-structure interactive phenomena - doi: 10.5269/bspm.v25i1-2.7422. Boletim da Sociedade Paranaense de Matemática, Tome 23 (2009) . doi : 10.5269/bspm.v25i1-2.7422. http://gdmltest.u-ga.fr/item/7422/