In this note, we obtain some improvements of results established on delta-semicontinuous functions in [3] and show that a function $f : (X, \tau) \rightarrow (Y, \sigma)$ isalmost \delta-semicontinuous if and only if $f : (X, \tau_s) \rightarrow (Y, \sigma_s)$ is semi-continuous,where $\tau_s$ and $\sigma_s$ are the semiregularizations $\tau$ and $\sigma$, respectively.
@article{7403, title = {A note on almost delta-semicontinuous functions - doi: 10.5269/bspm.v26i1-2.7403}, journal = {Boletim da Sociedade Paranaense de Matem\'atica}, volume = {23}, year = {2009}, doi = {10.5269/bspm.v26i1-2.7403}, language = {EN}, url = {http://dml.mathdoc.fr/item/7403} }
Ekici, Erdal; Noiri, Takashi. A note on almost delta-semicontinuous functions - doi: 10.5269/bspm.v26i1-2.7403. Boletim da Sociedade Paranaense de Matemática, Tome 23 (2009) . doi : 10.5269/bspm.v26i1-2.7403. http://gdmltest.u-ga.fr/item/7403/