In this paper singularly perturbed vector fields X_{\varepsilon} defined in R^2 are discussed. The main results use the solutions of the linear partial diferential equation X_{\varepsilon}V = div(X_{\varepsilon})V to give conditions for the existence of limit cycles converging to a singular orbit with respect to the Hausdor distance.
@article{7401, title = {Limit cycles for Singular Perturbation Problems via Inverse Integrating Factor - doi: 10.5269/bspm.v26i1-2.7401}, journal = {Boletim da Sociedade Paranaense de Matem\'atica}, volume = {23}, year = {2009}, doi = {10.5269/bspm.v26i1-2.7401}, language = {EN}, url = {http://dml.mathdoc.fr/item/7401} }
Llibre, Jaume; Medrado, João C. R.; Silva, Paulo R. da. Limit cycles for Singular Perturbation Problems via Inverse Integrating Factor - doi: 10.5269/bspm.v26i1-2.7401. Boletim da Sociedade Paranaense de Matemática, Tome 23 (2009) . doi : 10.5269/bspm.v26i1-2.7401. http://gdmltest.u-ga.fr/item/7401/