A Language Engineering Architecture for Processing Informal Mathematical Discourse
Wolska, Magdalena
Towards Digital Mathematics Library. Birmingham, United Kingdom, July 27th, 2008, GDML_Books, (2008), p. 131-136 / Harvested from

We present a modular architecture for processing informal mathematical language as found in textbooks and mathematical publications. We point at its properties relevant in addressing three aspects of informal mathematical discourse: (i) the interleaved symbolic and natural language, (ii) the linguistic, domain, and notational context, and (iii) the imprecision of the informal language. The objective in the modular approach is to enable parameterisation of the system with respect to the natural language of the text and the mathematical domain of discourse.

EUDML-ID : urn:eudml:doc:220251
Mots clés:
Mots clés:
@article{702548,
     title = {A Language Engineering Architecture for~Processing~Informal~Mathematical~Discourse},
     booktitle = {Towards Digital Mathematics Library. Birmingham, United Kingdom, July 27th, 2008},
     series = {GDML\_Books},
     publisher = {Masaryk University},
     address = {Brno},
     year = {2008},
     pages = {131-136},
     zbl = {1170.68496},
     url = {http://dml.mathdoc.fr/item/702548}
}
Wolska, Magdalena. A Language Engineering Architecture for Processing Informal Mathematical Discourse, dans Towards Digital Mathematics Library. Birmingham, United Kingdom, July 27th, 2008, GDML_Books,  (2008), pp. 131-136. http://gdmltest.u-ga.fr/item/702548/

Sgall, P.; Hajičová, E.; Panevová, J. The meaning of the sentence in its semantic and pragmatic aspects, . Dordrecht: Reidel. (1986)

H., Kamp; U., Reyle From Discourse to Logic. Introduction to Model-theoretic Semantics of Natural Language, Formal Logic and Discourse Representation Theory, . Kluwer, Dordrecht. (1993)

Baur, J. Syntax und Semantik mathematischer Texte, . Diplomarbeit. Computerlinguistik, Universität des Saarlandes, Saarbrücken, Germany. (1999)

Lakoff, G.; Núñez, R. E. Where mathematics comes from. How the embodied mind brings mathematics into being, . New York: Basic Books. (2000) | MR 1794854

Wolska, M.; Kruijff-Korbayová Analysis of mixed natural and symbolic language input in mathematical dialogs, . In Proceedings of ACL-04, pp. 25–32. (2004)

Wolska, M.; Kruijff-Korbayová; Horacek, H. Lexical-semantic interpretation of language input in mathematical dialogs, . In Proceedings of the ACL 2nd Workshop on Text Meaning and Interpretation, pp. 81–88. (2004)

Horacek, H.; Wolska, M. Interpreting semi-formal utterances in dialogs about mathematical proofs, . Data and Knowledge Engineering, 58(1):90-106. (2006)

Wolska, M.; Kruijff-Korbayová, I. Modeling anaphora in informal mathematical dialogue, . In Proceedings of the 10th Workshop on the Semantics and Pragmatics of Dialogue (brandial-06), pp. 147–154. (2006)

Zinn, C. Supporting the formal verification of mathematical texts, Journal of Applied Logic, 4(4), pp. 592–621. (2006) | MR 2277555 | Zbl 1107.68104

Kamareddine, F.; Lamar, R.; Maarek, M.; Wells, J. B. Restoring Natural Language as a Computerised Mathematics Input Method (2007) | Zbl 1202.68383

Natho, N.; Jeschke, S.; Pfeiffer, O.; Wilke, M. Natural language processing methods for extracting information from mathematical texts, Advances in Communication Systems and Electrical Engineering, LNEE 4, pp. 297–308. (2008)