Non-Newtonian fluids and function spaces
Růžička, Michael ; Diening, Lars
Nonlinear Analysis, Function Spaces and Applications, GDML_Books, (2007), p. 95-143 / Harvested from

In this note we give an overview of recent results in the theory of electrorheological fluids and the theory of function spaces with variable exponents. Moreover, we present a detailed and self-contained exposition of shifted N-functions that are used in the studies of generalized Newtonian fluids and problems with p-structure.

EUDML-ID : urn:eudml:doc:221529
Mots clés:
Mots clés:
@article{702495,
     title = {Non-Newtonian fluids and function spaces},
     booktitle = {Nonlinear Analysis, Function Spaces and Applications},
     series = {GDML\_Books},
     publisher = {Institute of Mathematics of the Academy of Sciences of the Czech Republic},
     address = {Praha},
     year = {2007},
     pages = {95-143},
     url = {http://dml.mathdoc.fr/item/702495}
}
Růžička, Michael; Diening, Lars. Non-Newtonian fluids and function spaces, dans Nonlinear Analysis, Function Spaces and Applications, GDML_Books,  (2007), pp. 95-143. http://gdmltest.u-ga.fr/item/702495/

Cianchi A. Symmetrization in anisotropic elliptic problems, Preprint, 2006. | MR 2334829 | Zbl 1219.35028

Uribe D. Cruz,- Fiorenza A.; Martell J. M.; Pérez C. The boundedeness of classical operators on variable Lp spaces, Ann. Acad. Sci. Fenn. Math. 31 (2004), no. 1, 239–264. Zbl 1100.42012, MR 2006m:42029.

Uribe D. Cruz,- Fiorenza A.; Neugebauer C. J. The maximal function on variable Lp spaces, Ann. Acad. Sci. Fenn. Math. 28 (2003), no. 1, 223–238. Zbl 1037.42023, MR 2004c:42039. | MR 1976842

Diening L. Maximal function on generalized Lebesgue spaces Lp(·) , Math. Inequal. Appl. 7 (2004), 245–253. Zbl 1071.42014, MR 2005k:42048. | MR 2057643

Diening L. Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces Lp(·) and Wk,p(·) , Math. Nachr. 268 (2004), 31–43. Zbl 1065.46024, MR 2005d:46071. | MR 2054530

Diening L. Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces, Bull. Sci. Math. 129 (2005), no. 8, 657–700. MR 2006e:46032. | MR 2166733

Diening L.; Ebmeyer C.; Růžička M. Optimal convergence for the implicit space-time discretization of parabolic systems with p-structure, SIAM J. Numer. Anal. 45 (2007), no. 2, 457–472. MR2300281. | MR 2300281 | Zbl 1140.65060

Diening L.; Ettwein F. Fractional estimates for non-differentiable elliptic systems with general growth, Forum Math. (2006), accepted. | MR 2418205 | Zbl 1188.35069

Diening L.; Kreuzer C. Linear convergence of an adaptive finite element method for the p-Laplacian equation, SIAM J. Numer. Anal. (2007), submitted. | MR 2383205 | Zbl 1168.65060

Diening L.; Málek J.; Steinhauer M. On Lipschitz truncations of sobolev functions (with variable exponent) and their selected applications, ESAIM, Control, Optim. Calc. Var. (2006), submitted. | MR 2394508 | Zbl 1143.35037

Diening L.; Růžička M. Error estimates for interpolation operators in Orlicz-Sobolev spaces and quasi norms, Num. Math. (2007), DOI 10.1007/s00211-007-0079-9.

Diening L.; Růžička M. Calderón–Zygmund operators on generalized Lebesgue spaces Lp(·) and problems related to fluid dynamics, J. Reine Angew. Math. 563 (2003), 197–220. Zbl 1072.76071, MR 2005g:42054. | MR 2009242

Diening L.; Růžička M. Integral operators on the halfspace in generalized Lebesgue spaces Lp(·), Part I, J. Math. Anal. Appl. 298 (2004), 559–571. Zbl pre02107284, MR 2005k:47098a. | MR 2086975 | Zbl 1128.47044

Diening L.; Růžička M. Integral operators on the halfspace in generalized Lebesgue spaces Lp(·), Part II, J. Math. Anal. Appl. 298 (2004), 572–588. Zbl pre02107285, MR 2005k:47098b. | MR 2086976 | Zbl 1128.47044

Eckart W. Theoretische Untersuchungen von elektrorheologischen Flüssigkeiten bei homogenen und inhomogenen elektrischen Feldern, Aachen: Shaker Verlag.Darmstadt: TU Darmstadt, Fachbereich Mathematik, 2000. Zbl 0958.76003. | Zbl 0958.76003

Ettwein F.; Růžička M. Existence of local strong solutions for motions of electrorheological fluids in three dimensions, Comput. Appl. Math. 53 (2007), 595–604. | MR 2323712 | Zbl 1122.76092

Frehse J.; Málek J.; Steinhauer M. On analysis of steady flows of fluids with shear-dependent viscosity based on the Lipschitz truncation method, SIAM J. Math. Anal. 34 (2003), no. 5, 1064–1083 (electronic). Zbl 1050.35080, MR 2005c:76007. | MR 2001659 | Zbl 1050.35080

Huber A. Die Divergenzgleichung in gewichteten Räumen und Flüssigkeiten mit p(·)-Struktur, Diplomarbeit, Universität Freiburg, 2005.

Marcellini P.; Papi G. Nonlinear elliptic systems with general growth, J. Differential Equations 221 (2006), no. 2, 412–443. Zbl pre05012954, 2007a:35024. | MR 2196484

Nekvinda A. Hardy-Littlewood maximal operator on Lp(x)() , Math. Inequal. Appl. 7 (2004), no. 2, 255–265. Zbl 1059.42016, MR 2005f:42045. | MR 2057644 | Zbl 1059.42016

Pick L.; Růžička M. An example of a space Lp(x) on which the hardy-littlewood maximal operator is not bounded, Expo. Math. 19 (2001), 369–371. Zbl 1003.42013, MR 2002m:42016. | MR 1876258

Rajagopal K. R.; Růžička M. Mathematical modeling of electrorheological materials, Cont. Mech. Thermodynamics 13 (2001), 59–78. Zbl 0971.76100. | Zbl 0971.76100

Růžička M. Electrorheological fluids: Modeling and mathematical theory, Lecture Notes in Math. 1748, Springer-Verlag, Berlin, 2000. MR 2002a:76004. | MR 1810360 | Zbl 0968.76531

Růžička M. Modeling, mathematical and numerical analysis of electrorheological fluids, Appl. Math. 49 (2004), no. 6, 565–609. Zbl 1099.35103, MR 2005i:35223. | MR 2099981 | Zbl 1099.35103

Wolf J. Existence of weak solutions to the equations of nonstationary motion of non-Newtonian fluids with shear-dependent viscosity, J. Math. Fluid Mech. (2006), no. 1, 104–138. MR2305828. | MR 2305828

Gossez J. P. Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. Amer. Math. Soc. 190 (1974), 163–205. Zbl 0239.35045, MR 49 #7598. (190 ) | MR 0342854

Orlicz W. Über konjugierte Exponentenfolgen, Studia Math. 3 (1931), 200–211. Zbl 0003.25203. (1931) | Zbl 0003.25203

Nakano H. Modulared semi-ordered linear spaces, Tokyo Math. Book Series, Vol. 1. Maruzen Co. Ltd., Tokyo, 1950. Zbl 0041.23401, MR 12,420a. (1950) | MR 0038565 | Zbl 0041.23401

Calderón A. P.; Zygmund A. On the existence of certain singular integrals, Acta Math. 88 (1952), 85–139. Zbl 0047.10201, MR 14,637f. (1952) | MR 0052553

Agmon S.; Douglis A.; Nirenberg L. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math. 12 (1959), 623–727. Zbl 0093.10401, MR 23 #A2610. (1959) | MR 0125307 | Zbl 0093.10401

Musielak J.; Orlicz W. On modular spaces, Studia Math. 18 (1959), 49–65. Zbl 0086.08901, MR 21 #298. (1959) | MR 0101487 | Zbl 0099.09202

skii M. A. Krasnosel,’ Rutickii; Ja. B. Convex functions and Orlicz spaces, Translated from the first Russian edition by Leo F. Boron, P. Noordhoff Ltd., Groningen, 1961. Zbl 0095.09103, MR 23 #A4016. (1961) | MR 0126722

Donaldson T. Nonlinear elliptic boundary value problems in Orlicz-Sobolev spaces, J. Differential Equations 10 (1971), 507–528. Zbl 0218.35028, MR 45 #7524. (1971) | MR 0298472 | Zbl 0218.35028

Muckenhoupt B. Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226. Zbl 0236.26016, MR 45 #2461. (1972) | MR 0293384 | Zbl 0236.26016

Bogovskii M. E. Solution of the first boundary value problem for the equation of continuity of an incompressible medium, Dokl. Akad. Nauk SSSR 248 (1979), 1037–1040. English transl. in Soviet Math. Dokl. 20 (1979), 1094–1098. Zbl 0499.35022, MR 82b:35135. (1979) | MR 0553920

Hudzik H. The problems of separability, duality, reflexivity and of comparison for generalized orlicz-sobolev spaces Wmk(ω) , Comment. Math. Prace Mat. 21 (1979), 315–324. Zbl 0429.46017, MR 81k:46031. (1979) | MR 0577521

Talenti G. Nonlinear elliptic equations, rearrangements of functions and Orlicz spaces, Ann. Mat. Pura Appl., IV. Ser. 120 (1979), 160–184. Zbl 0419.35041, MR 81i:35068. (1979) | MR 0551065 | Zbl 0419.35041

Bogovskii M. E. Solution of some problemsof vector analysis related to the operators div and grad , Trudy Sem. S. L. Soboleva, no. 1, Akad. Nauk SSSR, Sibirsk. Otdel., Inst. Mat., Novosibirsk (1980), 5–40. (1980) | MR 0631691

Musielak J. Orlicz spaces and modular spaces, Lecture Notes Math. 1034. Springer-Verlag, Berlin, 1983. Zbl 0557.46020, MR 85m:46028. (1983) | MR 0724434 | Zbl 0557.46020

Sharapudinov I. I. The basis property of the Haar system in the space p(t)([0,1]) and the principle of localization in the mean, Mat. Sb. (N.S.) 130(172) (1986), no. 2, 275–283, 286. English transl. in Math. USSR, Sb. 58 (1987), 279–287. Zbl 0639.42026, MR 88b:42034. (1986) | MR 0854976

Zhikov V. V. Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), no. 4, 675–710, 877. English transl. in Math. USSR Izv. 29 (1987), no. 1, 33–66. Zbl 0599.49031, MR 88a:49026. (1986) | MR 0864171 | Zbl 0599.49031

Milani A.; Picard R. Decomposition theorems and their application to non-linear electro- and magneto-static boundary value problems, Partial differential equations and calculus of variations, Lecture Notes Math. 1357, 317–340, Springer, Berlin, 1988, LNM 1357. Zbl 0684.35084, MR 90b:35218. (1988) | MR 0976242

Kokilashvili V.; Krbec M. Weighted inequalities in Lorentz and Orlicz spaces, World Scientific Publishing Co., Inc., River Edge, NJ, 1991. Zbl 0751.46021, 93g:42013. (1991) | MR 1156767 | Zbl 0751.46021

Kováčik O.; Rákosník J. On spaces Lp(x) and Wk,p(x) , Czechoslovak Math. J. 41(116) (1991), no. 4, 592–618. Zbl 0784.46029, MR 92m:46047. (1991)

Halsey T. C.; Martin J. E.; Adolf D. Rheology of electrorheological fluids, Phys. Rev. Letters 68 (1992), 1519–1522. (1992)

Giusti E. Metodi diretti nel calcolo delle variazioni, Unione Matematica Italiana, Bologna, 1994. Zbl 0942.49002, MR 2000f:49001. (1994) | MR 1707291 | Zbl 0942.49002

Jdayil B. Abu,- Brunn P. O. Effects of nonuniform electric field on slit flow of an electrorheological fluid, J. Rheol. 39 (1995), 1327–1341. (1995)

Jdayil B. Abu,- Brunn P. O. Effects of electrode morphology on the slit flow of an electrorheological fluid, J. Non-New. Fluid Mech. 63 (1996), 45–61. (1996)

Málek J.; Nečas J.; Rokyta M.; Růžička M. Weak and measure-valued solutions to evolutionary PDEs, Applied Mathematics and Mathematical Computations, vol. 13, Chapman & Hall, London, 1996. Zbl 0851.35002, MR 97g:35002. (1996) | MR 1409366 | Zbl 0851.35002

Parthasarathy M.; Klingenberg D. J. Electrorheology: Mechanism and models, Materials, Sciences and Engineering R 17,2 (1996), 57–103. (1996)

Rajagopal K. R.; Růžička M. On the modeling of electrorheological materials, Mech. Research Comm. 23 (1996), 401–407. Zbl 0890.76007. (1996) | Zbl 0890.76007

Růžička M. A note on steady flow of fluids with shear dependent viscosity, Proceedings of the Second World Congress of Nonlinear Analysts, Part 5 (Athens, 1996). Nonlinear Anal., Theory Methods Appl. 30 (1997), no. 5, 3029–3039. Zbl 0906.35076, MR 99g:76005. (1996) | MR 1602945

Sharapudinov I. I. On the uniform boundedness in Lp(p=p(x)) of some families of convolution operators, Mat. Zametki 59 (1996), no. 2, 291–302, 320. English transl. in Math. Notes 59 (1996), no. 1-2, 205–212. Zbl 0873.47023, MR 97c:47035. (1996) | MR 1391844

Jdayil B. Abu,- Brunn P. O. Study of the flow behaviour of electrorheological fluids at shear- and flow- mode, Chem. Eng. and Proc. 36 (1997), 281–289. (1997)

Frehse J.; Málek J.; Steinhauer M. An existence result for fluids with shear dependent viscosity-steady flows, Nonlinear Anal., Theory Methods Appl. 30 (1997), no. 5, 3041–3049. Zbl 0902.35089, MR 99g:76006. (1997) | MR 1602949

Zhikov V. V. Meyer-type estimates for solving the nonlinear Stokes system, Differ. Uravn. 33 (1997), no. 1, 107–114, 143. English transl. in Differential Equations 33 (1997), no. 1, 108–115. Zbl 0911.35089, MR 99b:35170. (1997) | MR 1607245

Zhikov V. V. On some variational problems, Russian J. Math. Phys. 5 (1997), no. 1, 105–116 (1998). Zbl 0917.49006, MR 98k:49004. (1997) | MR 1486765 | Zbl 0917.49006

Frehse J.; Málek J.; Steinhauer M. On existence results for fluids with shear dependent viscosity – unsteady flows, Partial differential equations: theory and numerical solution. Proceedings of the ICM’98 satellite conference, Praha, 1998 (W. Jäger, J. Nečas, O. John, K. Najzar and J. Stará, eds.) 121–129, Chapman & Hall/CRC Res. Notes Math. 406, Boca Raton, FL, 2000. (1998) | MR 1713880

Samko S. G. Convolution and potential type operators in Lp(x)(n) , Integral Transform. Spec. Funct. 7 (1998), no. 3-4, 261–284. Zbl 1023.31009, MR 2001d:47076. (1998) | MR 1775832

Růžička M. Flow of shear dependent electrorheological fluids: unsteady space periodic case, Applied nonlinear analysis (A. Sequeira, ed.), Kluwer/Plenum, New York, 1999, pp. 485–504. Zbl 0954.35138, MR 2001h:76115. (1999) | MR 1727468 | Zbl 0954.35138

Samko S. G. Density C0(n) in the generalized Sobolev spaces Wm,p(x)(n) , Dokl. Akad. Nauk 369 (1999), no. 4, 451–454. Zbl 1052.46028, MR2001a:46036. (1999) | MR 1748959