This paper is devoted to embedding theorems for classes of functions of several variables. One of our main objectives is to give an analysis of some basic embeddings as well as to study relations between them. We also discuss some methods in this theory that were developed in the last decades. These methods are based on non-increasing rearrangements of functions, iterated rearrangements, estimates of sections of functions, related mixed norms, and molecular decompositions.
@article{702492, title = {On embedding theorems}, booktitle = {Nonlinear Analysis, Function Spaces and Applications}, series = {GDML\_Books}, publisher = {Institute of Mathematics of the Academy of Sciences of the Czech Republic}, address = {Praha}, year = {2007}, pages = {35-94}, url = {http://dml.mathdoc.fr/item/702492} }
Kolyada, Viktor I. On embedding theorems, dans Nonlinear Analysis, Function Spaces and Applications, GDML_Books, (2007), pp. 35-94. http://gdmltest.u-ga.fr/item/702492/
A note on spaces and Sobolev embeddings, Indiana Univ. Math. J. 52 (2003), no. 5, 1215–1230. Zbl 1098.46023, MR 2004h:46025. | MR 2010324
Another look at Sobolev spaces, Optimal Control and Partial Differential Equations. In honour of Professor Alain Bensoussan’s 60th Birthday. Proceedings of the conference, Paris, France, December 4, 2000 (J. L. Menaldi, E. Rofman, A. Sulem, eds.). IOS Press, Amsterdam, 2001, 439–455. Zbl 1103.46310. | Zbl 1103.46310
Limiting embedding theorems for when and applications, J. Anal. Math. 87 (2002), 77–101. Zbl 1029.46030, MR 2003k:46035. | MR 1945278
How to recognize constant functions. Connections with Sobolev spaces, (Russian) Uspekhi Mat. Nauk 57 (2002), no. 4(346), 59–74; English transl. in Russian Math. Surveys 57 (2002), no. 4, 693–708. Zbl 1072.46020, MR 2003m:46047. | MR 1942116 | Zbl 1072.46020
Gagliardo–Nirenberg, composition and products in fractional Sobolev spaces, J. Evol. Equ. 1 (2001), no. 4, 387–404. Zbl 1023.46031, MR 2002k:46073. | MR 1877265 | Zbl 1023.46031
Second order derivatives and rearrangements, Duke Math. J. 105 (2000), 355–385. Zbl 1017.46023, MR 2002e:46035. | MR 1801766 | Zbl 1017.46023
Rearrangements of functions in Besov spaces, Math. Nachr. 230 (2001), 19–35. Zbl 1022.46021, MR 2002h:46052. | MR 1854875 | Zbl 1022.46021
Symmetrization and second-order Sobolev inequalities, Ann. Mat. Pura Appl., IV. Ser. 183 (2004), no. 1, 45–77. Zbl pre05058531, MR 2005b:46067. | MR 2044332 | Zbl 1223.46033
Harmonic analysis of the space , Rev. Mat. Iberoamericana 19 (2003), no. 1, 235–263. Zbl 1044.42028, MR 2004f:42051. | MR 1993422 | Zbl 1044.42028
Inequalities of Gagliardo–Nirenberg type and estimates for the moduli of continuity, Uspekhi Mat. Nauk 60 (2005), no. 6, 139–156; English transl. in Russian Math. Surveys 60 (2005), no. 6, 1147–1164. MR 2007b:26026. | MR 2215758 | Zbl 1145.26010
Mixed norms and Sobolev type inequalities, Approximation and probability. Papers of the conference held on the occasion of the 70th anniversary of Prof. Zbigniew Ciesielski, Bedlewo, Poland, September 20–24, 2004. Warsaw: Polish Academy of Sciences, Institute of Mathematics. Banach Center Publ. 72 (2006), 141–160. Zbl pre05082653. | MR 2325743 | Zbl 1114.46024
On limiting embeddings of Besov spaces, Studia Math. 171 (2005), no. 1, 1–13. Zbl 1090.46026, MR 2006m:46042. | MR 2182269 | Zbl 1090.46026
Analysis, 2nd ed. Graduate Studies in Mathematics, 14, Amer. Math. Soc., Providence, RI, 2001. Zbl 0966.26002, MR 2001i:00001. | MR 1817225 | Zbl 0966.26002
An elementary proof of sharp Sobolev embeddings, Proc. Amer. Math. Soc. 130 (2002), no. 2, 555–563. Zbl 0990.46022, MR 2002j:46042. | MR 1862137
On the Brezis and Mironescu conjecture concerning a Gagliardo–Nirenberg inequality for fractional Sobolev norms, J. Math. Pures Appl. 81, no. 9 (2002), 877–884. Zbl 1036.46026, MR 2003j:46052. | MR 1940371
Embedding theorems for anisotropic Lipschitz spaces, Studia Math. 168 (2005), no. 1, 51–72. Zbl 1079.46025, MR 2006a:46037. | MR 2133387 | Zbl 1079.46025
On the differential properties of the rearrangements of functions, In: Progress in Approximation Theory (A. A. Gonchar and E. B. Saff, eds.). Springer Ser. Comput. Math. 19, Springer-Verlag, Berlin, 1992, 333–352. Zbl 0848.26013, MR 95j:26025. (19, ) | MR 1240790
Embeddings of fractional Sobolev spaces and estimates of Fourier transforms, Mat. Sb. 192 (2001), no. 7, 51–72; English transl. in Sb. Math. 192 (2001), no. 7, 979–1000. Zbl 1031.46040, MR 2002k:46080. (192 ) | MR 1861373
Some properties of fractional integrals. I, Math. Z. 27 (1928), no. 1, 565–606. JFM 54.0275.05, MR 1544927. (1928) | MR 1544927
A convergence criterion for Fourier series, Math. Z. 28 (1928), no. 1, 612–634. JFM 54.0301.03, MR 1544980. (1928) | MR 1544980
An inequality related to the isoperimetric inequality, Bull. Amer. Math. Soc. 55 (1949), 961–962. Zbl 0035.38302, MR 11,166d. (1949) | MR 0031538 | Zbl 0035.38302
On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, , J. Funct. Anal. 195 (2002), no. 2, 230–238. Zbl 1028.46050, MR 2003j:46051. (195 ) | MR 1940355
Proprietà di alcune classi di funzioni in più variabili, Ricerche Mat. 7 (1958), 102–137. Zbl 0089.09401, MR 21 #1526 (1958) | MR 0102740 | Zbl 0089.09401
Convolution operators and spaces, Duke Math. J. 30 (1963), 129–142. Zbl 0178.47701, MR 26 #4193. (1963) | MR 0146673
Espaces d’interpolation et espaces de Soboleff, Ann. Inst. Fourier (Grenoble) 16 (1966), no. 1, 279–317. Zbl 0151.17903, MR 36 #4334. (1966) | MR 0221282
The embedding of certain function classes , Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), 649–686; English transl. in Math. USSR Izv. 2 (1968), 601–637. Zbl 0181.13404, MR 37 #6749. (1968) | MR 0231194
Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970. Zbl 0207.13501, MR 44 #7280. (1970) | MR 0290095 | Zbl 0207.13501
Imbedding theorems and relations between best approximations (moduli of continuity) in various metrics, Mat. Sb. 81 (1970), no. 1, 104–131; English transl. in Math. USSR Sb. 10 (1970), no. 1, 103–126. Zbl 0215.17702, MR 54 #3393. (1970) | MR 0415303
Equimeasurable rearrangements of functions, Queen’s Papers in Pure and Applied Mathematics 28, Queen’s University, Kingston, Ont., 1971. Zbl 0275.46024, MR 51 #8357. (1971) | MR 0372140 | Zbl 0275.46024
Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series 30. Princeton Univ. Press, Princeton, N.J., 1971. Zbl 0207.13501, MR 44 #7280. (1971) | MR 0304972 | Zbl 0232.42007
Embedding theorems for Orlicz spaces and their applications to boundary value problems, Sib. Mat. Zh. 13 (1972), 334–348; English transl. in Siberian Math. J. 13 (1972), 231–240. Zbl 0246.46022, MR 48 #12033. (1972) | MR 0333708
The embedding of certain classes of functions of several variables, Sib. Mat. Zh. 14 (1973), 766–790; English transl. in Siberian Math. J. 14 (1973). Zbl 0281.46027, MR 48 #12034. (1973) | MR 0333709
Monotonicity of certain functionals under rearrangement, Ann. Inst. Fourier (Grenoble) 24, no. 2 (1974), 67–116. Zbl 0274.26006, MR 54 #2894. (1974) | MR 0414802 | Zbl 0274.26006
The non-increasing rearrangement as extremal function, Report no. 7. Univ. Umeå, Dept. of Math., Umeå, 1974. (1974) | MR 1352013 | Zbl 0337.26007
A Fourier series in an arbitrary bounded orthonormal system that diverges on a set of positive measure, Mat. Sb. 98, no. 3 (1975), 436–449; English transl. in Math. USSR-Sb. 27 (1975), 393–405. Zbl 0371.42010, MR 52#11459 (1975) | MR 0390634 | Zbl 0335.42011
Moduli of continuity and rearrangements, Mat. Zametki 18 (1975), 63–66; English transl. in Math. Notes 18 (1975), 619–621. Zbl 0322.26002, MR 52 #3442. (1975) | MR 0382559
On imbedding in classes , Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), 418–437; English transl. in Math. USSR Izv. 9 (1975), 395–413. Zbl 0334.46034, MR51 #11084. (1975) | MR 0374888
Approximation of Functions of Several Variables and Imbedding Theorems, Die Grundlehren der mathematischen Wissenschaften 205. Springer–Verlag, Berlin, 1975. Zbl 0307.46024, MR 51 #11073. (1975) | MR 0374877
On the moduli of continuity of equimeasurable functions in the classes , Mat. Zametki 17 (1975), no. 3, 231–244; English transl. in Math. Notes 17 (1975), 134–141. MR 53 #8342. (1975) | MR 0404542
Combinatorial inequalities and smoothness of functions, Bull. Amer. Math. Soc. 82 (1976), 157–170. Zbl 0351.26005, MR 58 #28362. (1976) | MR 0582776 | Zbl 0351.26005
Symmetric rearrangement of functions and sets in , Preprint Univ. Umeå, Dept. of Math., no. 1, Umeå, 1977. (1977)
Integral Representations of Functions and Imbedding Theorems. Vol. 1–2, Scripta Series in Mathematics. V. H. Winston & Sons, Washington, D.C., John Wiley & Sons, New York, 1978, 1979. Zbl 0392.46022, 0392.46023, MR 80f:46030a, 80f:46030b. (1978) | MR 0521808
Remarks on the estimation of Lebesgue functions of orthonormal systems, Mat. Sb. 106 (1978), no. 3, 380–385; English transl. in Math. USSR Sb. 35 (1979), no. 1, 57–62. Zbl 0417.42014, MR 58 #29787. (1978) | MR 0619470
Interpolation of linear operators, Nauka, Moscow 1978. Zbl 0499.46044, MR 81f:46086. English transl. in Translations of Mathematical Monographs 54, Amer. Math. Soc., Providence, 1982. Zbl 0493.46058, MR 84j:46103. (1978) | MR 0649411
Moduli of continuity of equimeasurable functions and approximation of functions by algebraic polynomials in , Ph.D. Thesis, Odessa State University, Odessa, 1978 (Russian). (1978)
Peano curves and smoothness of functions, Adv. Math. 35 (1980), 129–157. Zbl 0449.26015, MR 82e:26017. (1980) | MR 0560132 | Zbl 0449.26015
Weak- and BMO, Ann. Math. 113 (1981), 601–611. Zbl 0465.42015, MR 82h:46047. (1981) | MR 0621018
Multivariate rearrangements and Banach function spaces with mixed norms, Trans. Amer. Math. Soc. 263 (1981), no. 1, 149–167. Zbl 0462.46020, 81k:46023. (1981) | MR 0590417 | Zbl 0462.46020
Nonlinear Analysis on Manifolds. Monge-Ampère Equations, Grundlehren der Mathematischen Wissenschaften, Bd. 252. Springer Verlag, New York, 1982. Zbl 0512.53044, 85j:58002. (1982) | MR 0681859 | Zbl 0512.53044
An embedding theorem for the Sobolev space , Bull. Sci. Math., II. Ser. 107 (1983), no. 3, 253–259. Zbl 0529.46025, MR 85b:46042. (1983) | MR 0719267
Embedding of generalized Nikol’skii-Besov spaces into Lorentz spaces, Trudy Mat. Inst. Steklov 172 (1985), 128–139; English transl. in Proc. Stekolov Inst. Math. 172 (1985), 143–154. MR 87e:46047. (1985) | MR 0810423
On embedding of classes , Mat. Sb. 127 (1985), no. 3, 352–383; English transl. in Math. USSR-Sb. 55 (1986), no. 2, 351–381. Zbl 0581.41030, MR 87d:46040. (1985) | MR 0798382
Mapping properties of nonlinear operators in spaces of Triebel-Lizorkin and Besov type, Anal. Math. 12 (1986), no. 4, 313–346. Zbl 0644.46022,MR 88f:46079. (1986) | MR 0877164 | Zbl 0644.46022
Mixed norms and rearrangements: Sobolev’s inequality and Littlewood’s inequality, Ann. Mat. Pura Appl., IV. Ser. 148 (1987), 51–76. Zbl 0639.46034, MR 89e:46037. (1987) | MR 0932758 | Zbl 0639.46034
Embedding theorems for the Lizorkin-Triebel classes, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov 159 (1987), 103–112 (in Russian); English transl. in J. Soviet Math. 47 (1989), 2896–2903. Zbl 0686.46027, MR 88h:46073. (1987) | MR 0885079
Interpolation of Operators, Pure and Applied Mathematics, 129. Academic Press, Inc., Boston, MA, 1988. Zbl 0647.46057,MR 89e:46001. (1988) | MR 0928802 | Zbl 0647.46057
Estimates of rearrangements and embedding theorems, Mat. Sb. 136 (1988), 3–23; English transl. in Math. USSR-Sb. 64 (1989), no. 1, 1–21. Zbl 0693.46030. (1988) | MR 0945897
On relations between moduli of continuity in different metrics, , Trudy Mat. Inst. Steklov 181 (1988), 117–136; English transl. in Proc. Steklov Inst. Math. 181 (1989), 127–148. Zbl 0716.41018, MR 90k:41021. (1988) | MR 0945427
Embedding theorems for spaces with a given majorant of the modulus of continuity, Ph.D. Thesis, LOMI AN SSSR, Leningrad, 1988 (Russian). (1988)
Rearrangements of functions and embedding theorems, Uspekhi Matem. Nauk 44 (1989), no. 5, 61–95; English transl. in Russian Math. Surveys 44 (1989), no. 5, 73–118. MR 91i:46029. (1989) | MR 1040269
Weakly differentiable functions. Sobolev spaces and functions of bounded variation, Graduate Texts in Mathematics, 120, Springer-Verlag, New York, 1989. Zbl 0692.46022, MR91e:46046. (1989) | MR 1014685 | Zbl 0692.46022
Fonctions qui opèrent sur les espaces de Sobolev, J. Funct. Anal. 97 (1991), no. 2, 351–360. Zbl 0737.46011, MR 92e:46062. (1991) | MR 1111186 | Zbl 0737.46011
Peano curves and moduli of continuity, Mat. Zametki 50 (1991), no. 2, 20–27; English transl. in Math. Notes 50 (1991), no. 1–2, 783–789. Zbl 0743.26008, MR 92k:26028. (1991) | MR 1139695 | Zbl 0743.26008
On the boundedness of the mapping in Besov spaces, Comment. Math. Univ. Carolin. 33 (1992), no. 1, 57–66. Zbl 0766.46018, MR 93c:46052. (1992) | MR 1173747 | Zbl 0766.46018
On the embedding of Sobolev spaces, Mat. Zametki 54 (1993), no. 3, 48–71; English transl. in Math. Notes 54 (1993), no. 3, 908–922. Zbl 0821.46043, MR 94j:46042. (1993) | MR 1248284
Molecular decompositions and embedding theorems for vector-valued Sobolev spaces with gradient norm, Studia Math. 107 (1993), no. 1, 61–100. Zbl 0811.46028, MR 94h:46050. (1993) | MR 1239425 | Zbl 0811.46028
Sobolev embeddings into BMO, VMO, and , Ark. Mat. 36 (1998), no. 2, 317–340. Zbl 1035.46502, MR 99k:46052. (1998) | MR 1650446
Rearrangement of functions and embedding of anisotropic spaces of Sobolev type, East J. Approx. 4 (1998), no. 2, 111–199. Zbl 0917.46019, MR 99g:46043b. (1998) | MR 1638343 | Zbl 0917.46019
Iterative rearrangements of functions and the Lorentz spaces, Izv. Vyssh. Uchebn. Zaved. Mat. (1998), no. 5, 73–77; English transl. in Russian Mathematics (Iz. VUZ) 42 (1998), no. 5, 71–75. MR 99i:46019. (1998) | MR 1639194