If , we examine the type of convergence of to so that , , implies .
@article{702485, title = {Transmission of convergence}, booktitle = {Nonlinear Analysis, Function Spaces and Applications}, series = {GDML\_Books}, publisher = {Czech Academy of Sciences, Mathematical Institute}, address = {Praha}, year = {2003}, pages = {193-215}, url = {http://dml.mathdoc.fr/item/702485} }
Neugebauer, Christoph J. Transmission of convergence, dans Nonlinear Analysis, Function Spaces and Applications, GDML_Books, (2003), pp. 193-215. http://gdmltest.u-ga.fr/item/702485/
Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226. Zbl 0236.26016, MR 45 #2461. (1972) | MR 0293384 | Zbl 0236.26016
Weighted norm inequalities and related topics, North-Holland Mathematics Studies 116, North-Holland, Amsterdam, 1985. Zbl 0578.46046, MR 87d:42023. (1985) | MR 0807149
Harmonic analysis: real variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series 43. Princeton University Press, Princeton, N. J., 1993. Zbl 0821.42001, MR 95c:42002. (1993) | MR 1232192 | Zbl 0821.42001
Norm inequalities for the minimal and maximal operator, and differentiation of the integral, Publ. Mat. 41 (1997), 577–604. Zbl 0903.42007, MR 99b:42022. (1997) | MR 1485505
Weighted norm inequalities for a family of one-sided minimal operators, Illinois J. Math. 41 (1997), 77–92. Zbl 0871.42019, MR 99b:42021. (1997) | MR 1433187
Weighted norm inequalities for the geometric maximal operator, Publ. Mat. 42 (1998), 239–263. Zbl 0919.42014, MR 99e:42029. (1998) | MR 1628101