We describe an approach to establish a theory of metric Sobolev spaces based on Lipschitz functions and their pointwise Lipschitz constants and the Poincaré inequality.
@article{702483, title = {Metric Sobolev spaces}, booktitle = {Nonlinear Analysis, Function Spaces and Applications}, series = {GDML\_Books}, publisher = {Czech Academy of Sciences, Mathematical Institute}, address = {Praha}, year = {2003}, pages = {133-147}, url = {http://dml.mathdoc.fr/item/702483} }
Koskela, Pekka. Metric Sobolev spaces, dans Nonlinear Analysis, Function Spaces and Applications, GDML_Books, (2003), pp. 133-147. http://gdmltest.u-ga.fr/item/702483/
Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000). Zbl 0954.46022, MR 2000j:46063. | MR 1683160
Sobolev spaces on metric measure spaces: an approach based on upper gradients, (in preparation).
A differentiable structure for metric measure spaces, Advances Math. (to appear). | MR 2703118 | Zbl 1077.46027
Modulus and the Poincaré inequality on metric measure spaces, Math. Z. (to appear). | MR 2013501 | Zbl 1037.31009
A remark on Poincaré inequalities on metric measure spaces, Preprint. | MR 2098359 | Zbl 1070.31003
Sharp inequalities via truncation, J. Math. Anal. Appl. 278 (2003), 324–334. | MR 1974010 | Zbl 1019.26003
Some equivalent definitions of high order Sobolev spaces on stratified groups and generalizations to metric spaces, Math. Ann. 323 (2002), 157–174. Zbl 1007.46034, MR 2003f:46048. | MR 1906913 | Zbl 1007.46034
High order representation formulas and embedding theorems on stratified groups and generalizations, Studia Math. 142 (2000), 101–133. Zbl 0974.46039, MR 2001k:46055. | MR 1792599 | Zbl 0974.46039
The sharp Riesz potential estimates in metric spaces, Indiana Univ. Math. J. 51 (2002), 251–268. Zbl pre01780940, MR 2003d:46045. | MR 1909289 | Zbl 1038.46027
Wavelets on self-similar sets and the structure of the spaces , Ann. Acad. Sci. Fenn. Math. Diss. 125 (2002). Zbl 0993.42016, MR 2002k:42081. | MR 1880640
Some novel types of fractal geometry, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2001.Zbl 0970.28001, MR 2002h:53073. | MR 1815356 | Zbl 0970.28001
Newtonian spaces: an extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoamericana 16 (2000), 243–279. Zbl 0974.46038, MR 2002b:46059. | MR 1809341 | Zbl 0974.46038
Sobolev meets Poincaré, C. R. Acad. Sci. Paris, Sér. I Math. 320 (1995), 1211–1215. Zbl 0837.46024, MR 96f:46062. (1995) | MR 1336257
Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), 1–61. Zbl 0915.30018, MR 99j:30025. (1998) | MR 1654771 | Zbl 0915.30018
Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999), 428–517. Zbl 0942.58018, MR 2000g:53043. (1999) | MR 1708448 | Zbl 0942.58018
Definitions of Sobolev classes on metric spaces, Ann. Inst. Fourier (Grenoble) 49 (1999), 1903–1924. Zbl 0938.46037, MR 2001a:46033. (1999) | MR 1738070 | Zbl 0938.46037