Metric Sobolev spaces
Koskela, Pekka
Nonlinear Analysis, Function Spaces and Applications, GDML_Books, (2003), p. 133-147 / Harvested from

We describe an approach to establish a theory of metric Sobolev spaces based on Lipschitz functions and their pointwise Lipschitz constants and the Poincaré inequality.

EUDML-ID : urn:eudml:doc:220171
Mots clés:
Mots clés:
@article{702483,
     title = {Metric Sobolev spaces},
     booktitle = {Nonlinear Analysis, Function Spaces and Applications},
     series = {GDML\_Books},
     publisher = {Czech Academy of Sciences, Mathematical Institute},
     address = {Praha},
     year = {2003},
     pages = {133-147},
     url = {http://dml.mathdoc.fr/item/702483}
}
Koskela, Pekka. Metric Sobolev spaces, dans Nonlinear Analysis, Function Spaces and Applications, GDML_Books,  (2003), pp. 133-147. http://gdmltest.u-ga.fr/item/702483/

Hajłasz P.; Koskela P. Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000). Zbl 0954.46022, MR 2000j:46063. | MR 1683160

Heinonen J.; Koskela P.; Shanmuganlingam N.; Tyson J. Sobolev spaces on metric measure spaces: an approach based on upper gradients, (in preparation).

Keith S. A differentiable structure for metric measure spaces, Advances Math. (to appear). | MR 2703118 | Zbl 1077.46027

Keith S. Modulus and the Poincaré inequality on metric measure spaces, Math. Z. (to appear). | MR 2013501 | Zbl 1037.31009

Keith S.; Rajala K. A remark on Poincaré inequalities on metric measure spaces, Preprint. | MR 2098359 | Zbl 1070.31003

Koskela P.; Onninen J. Sharp inequalities via truncation, J. Math. Anal. Appl. 278 (2003), 324–334. | MR 1974010 | Zbl 1019.26003

Liu Y.; Lu G.; Wheeden R. L. Some equivalent definitions of high order Sobolev spaces on stratified groups and generalizations to metric spaces, Math. Ann. 323 (2002), 157–174. Zbl 1007.46034, MR 2003f:46048. | MR 1906913 | Zbl 1007.46034

Lu G.; Wheeden R. L. High order representation formulas and embedding theorems on stratified groups and generalizations, Studia Math. 142 (2000), 101–133. Zbl 0974.46039, MR 2001k:46055. | MR 1792599 | Zbl 0974.46039

Malý J.; Pick L. The sharp Riesz potential estimates in metric spaces, Indiana Univ. Math. J. 51 (2002), 251–268. Zbl pre01780940, MR 2003d:46045. | MR 1909289 | Zbl 1038.46027

Rissanen J. Wavelets on self-similar sets and the structure of the spaces M1,p(E,μ) , Ann. Acad. Sci. Fenn. Math. Diss. 125 (2002). Zbl 0993.42016, MR 2002k:42081. | MR 1880640

Semmes S. Some novel types of fractal geometry, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2001.Zbl 0970.28001, MR 2002h:53073. | MR 1815356 | Zbl 0970.28001

Shanmugalingam N. Newtonian spaces: an extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoamericana 16 (2000), 243–279. Zbl 0974.46038, MR 2002b:46059. | MR 1809341 | Zbl 0974.46038

Hajłasz P.; Koskela P. Sobolev meets Poincaré, C. R. Acad. Sci. Paris, Sér. I Math. 320 (1995), 1211–1215. Zbl 0837.46024, MR 96f:46062. (1995) | MR 1336257

Heinonen J.; Koskela P. Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), 1–61. Zbl 0915.30018, MR 99j:30025. (1998) | MR 1654771 | Zbl 0915.30018

Cheeger J. Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999), 428–517. Zbl 0942.58018, MR 2000g:53043. (1999) | MR 1708448 | Zbl 0942.58018

Franchi B.; Hajłasz P.; Koskela P. Definitions of Sobolev classes on metric spaces, Ann. Inst. Fourier (Grenoble) 49 (1999), 1903–1924. Zbl 0938.46037, MR 2001a:46033. (1999) | MR 1738070 | Zbl 0938.46037