We give a survey on spectra for various classes of nonlinear operators, with a particular emphasis on a comparison of their advantages and drawbacks. Here the most useful spectra are the asymptotic spectrum by M. Furi, M. Martelli and A. Vignoli (1978), the global spectrum by W. Feng (1997), and the local spectrum (called “phantom”) by P. Santucci and M. Väth (2000). In the last part we discuss these spectra for homogeneous operators (of any degree), and derive a discreteness result and a nonlinear Fredholm alternative for such operators. This may be applied to an eigenvalue problem for the -Laplace operator which arises in various fields of applied mathematics, mechanics, and physics.
@article{702482, title = {A la recherche du spectre perdu: An invitation to nonlinear spectral theory}, booktitle = {Nonlinear Analysis, Function Spaces and Applications}, series = {GDML\_Books}, publisher = {Czech Academy of Sciences, Mathematical Institute}, address = {Praha}, year = {2003}, pages = {1-20}, url = {http://dml.mathdoc.fr/item/702482} }
Appell, Jürgen. A la recherche du spectre perdu: An invitation to nonlinear spectral theory, dans Nonlinear Analysis, Function Spaces and Applications, GDML_Books, (2003), pp. 1-20. http://gdmltest.u-ga.fr/item/702482/
A comparison of different spectra for nonlinear operators, Nonlinear Anal., Theory Methods Appl. 40A (2000), 73–90. Zbl 0956.47035, MR 2001g:47117. | Zbl 0956.47035
Nonlinear spectral theory for homogeneous operators, Nonlinear Funct. Anal. Appl. 7 (2002), 589–618. | MR 1959638 | Zbl 1045.47053
Generic Fredholm alternative-type results for the one dimensional -Laplacian, Nonlinear Differential Equations Appl. 8 (2001), 285–298. Zbl pre01652489, MR 2002f:34027. | MR 1841260
Stably solvable maps are unstable under small perturbations, Z. Anal. Anwend. 21 (2002), 203–208. Zbl pre01779543, MR 1 916 412. | MR 1916412 | Zbl 1016.47042
On the definition of eigenvalues for nonlinear operators, Nonlin. Anal., Theory Methods Appl. 40A (2000), 565–576. Zbl 0956.47038, MR 2001g:47118. | MR 1768911 | Zbl 0956.47038
Grasping the phantom: a new approach to nonlinear spectral theory, Ann. Mat. Pura Appl. 180 (2001), 255–284. | MR 1871616 | Zbl 1150.47042
The Furi-Martelli-Vignoli spectrum vs. the phantom, Nonlinear Anal., Theory Methods Appl. 47 (2001), 2237–2248. | MR 1971633 | Zbl 1042.47533
Fredholm alternative for the -Laplacian in higher dimensions, J. Math. Anal. Appl. 263 (2001), 182–194. Zbl 1002.35046,MR 2002h:35083. (194.) | MR 1864314
Monotone (nonlinear) operators in Hilbert space, Duke Math. J. 29 (1962), 341–346. Zbl 0111.31202, MR 29 #6319. (1962) | MR 0169064 | Zbl 0111.31202
Solvability of nonlinear equations with odd operators, (Russian). Funkts. Anal. Prilozh. 1 (1967), 66–73. Zbl 0165.49502, MR 36 #4396. English transl. in Funct. Anal. Appl. 1 (1967), 227–233. Zbl 0165.49502. (1967) | MR 0221344 | Zbl 0165.49502
Regular points, spectrum and eigenfunctions of nonlinear operators, (Russian). Dokl. Akad. Nauk SSSR 188 (1969) 274–277. English transl. in Soviet Math. Dokl. 10 (1969), 1101–1105. Zbl 0197.40402. (1969) | MR 0251599 | Zbl 0197.40402
Sur l’alternative de Fredholm pour les opérateurs non linéaires avec applications aux problèmes aux limites, Ann. Scuola Norm. Sup. Pisa, Sci. Fis. Mat., III. Ser. 23 (1969), 331–345. Zbl 0187.08103, MR 42 #2332. (1969) | MR 0267430 | Zbl 0187.08103
Existence of a spectrum for nonlinear transformations, Pacific J. Math. 31 (1969), 157–159. Zbl 0182.47203, MR 41 #4329. (1969) | MR 0259696 | Zbl 0182.47203
Fredholm alternative for nonlinear operators in Banach spaces and its applications to differential and integral equations, Commentat. Math. Univ. Carol. 11 (1970), 271–284. Zbl 0995.42801, MR 42 #909. (1970) | MR 0266000
Stably solvable operators in Banach spaces, Atti Accad. Naz. Lincei, VIII. Ser., Rend. Cl. Sci. Fis. Mat. Nat. 60 (1976), 21–26. Zbl 0361.47024, MR 58 #7251. (1976) | MR 0487632 | Zbl 0361.47024
Contributions to the spectral theory for nonlinear operators in Banach spaces, Ann. Mat. Pura Appl., IV. Ser. 118 (1978), 229–294. Zbl 0409.47043, MR 80k:47070. (1978) | MR 0533609 | Zbl 0409.47043
On the solvability of nonlinear operator equations in normed spaces, Ann. Mat. Pura Appl., IV. Ser. 128 (1980), 321–343. Zbl 0456.47051, MR 83h:47047. (1980) | MR 0591562 | Zbl 0456.47051
Über numerische Wertebereiche und Spektralwertabschätzungen, Acta Sci. Math. 47 (1984), 465–470. Zbl 0575.47005, MR 86i:47005. (1984) | MR 0783322 | Zbl 0575.47005
The spectrum of uniformly Lipschitz mappings, Proc. Royal Irish Acad., Sect. A 89 (1989), 101–114. Zbl 0661.47048, MR 90k:47120. (1989) | MR 1021228 | Zbl 0661.47048
Some spectral theory for nonlinear operators, Nonlinear Anal., Theory Methods Appl. 28 (1997), 1955–1976. Zbl 0876.47042, MR 98e:47098. (1997) | MR 1436365 | Zbl 0876.47042
On the Fredholm alternative for the -Laplacian, Proc. Amer. Math. Soc. 125 (1997), 3555–3559. Zbl 0882.35049, MR 98b:35058. (1997) | MR 1416077 | Zbl 0882.35049
A new spectral theory for nonlinear operators and its applications, Abstr. Appl. Anal. 2 (1997), 163–183. Zbl 0952.47047, MR 99d:47061. (1997) | MR 1604177 | Zbl 0952.47047
The Fredholm alternative at the first eigenvalue for the one dimensional -Laplacian, J. Differ. Equations 151 (1999), 386–419. Zbl 0931.34065, MR 99m:34042. (1999) | MR 1669705
On the Fredholm alternative for nonlinear homogeneous operators, In: Applied nonlinear analysis (A. Sequeira et al., eds.). Kluwer Academic/Plenum Publishing, New York, 1999, 41–48. Zbl 0956.47036, MR 1 727 439. (1999) | MR 1727439 | Zbl 0956.47036
Analogy of the Fredholm alternative for nonlinear operators, RIMS Kokyuroku 1105 (1999), 31–38. Zbl 0951.47503. (1999) | MR 1747554 | Zbl 0951.47503
Fredholm alternative for the -Laplacian: yes or no?, In: Function Spaces, Differential Operators and Nonlinear Analysis. Proceedings of the conference, Syöte, Finland, June 10–16, 1999 (V. Mustonen and J. Rákosník, eds.). Math. Inst. Acad. Sci. Czech Rep., Prague, 2000, 57–64. Zbl 0966.34012, MR 2000m:34042. (1999) | MR 1755297