The boundedness properties of commutators for operators are of central importance in Mathematical Analysis, and some of these commutators arise in a natural way from interpolation theory. Our aim is to present a general abstract method to prove the boundedness of the commutator for linear operators and certain unbounded operators that appear in interpolation theory, previously known and a priori unrelated for both real and complex interpolation methods, and also to show how the abstract result applies to some very concrete examples. In Section 1 some examples are given to present some instances where these commutators are used in Analysis. Section 2 is the basic one and contains a general “commutator theorem” for operators of interpolation methods, and the basic idea is that appears as a combination of two admissible interpolation methods, and , that correspond to and in the case of the complex method, with if (with a natural boundedness condition over the norms). Section 3 deals with the complex interpolation method and contains typical applications to commutators with pointwise multipliers. Section 4 refers to the real method, and an application to commutators with Fourier multipliers is included.
@article{702481, title = {The commutators of analysis and interpolation}, booktitle = {Nonlinear Analysis, Function Spaces and Applications}, series = {GDML\_Books}, publisher = {Czech Academy of Sciences, Mathematical Institute}, address = {Praha}, year = {2003}, pages = {21-72}, url = {http://dml.mathdoc.fr/item/702481} }
Cerdà, Joan. The commutators of analysis and interpolation, dans Nonlinear Analysis, Function Spaces and Applications, GDML_Books, (2003), pp. 21-72. http://gdmltest.u-ga.fr/item/702481/
Commutators and Besov spaces, Preprint.
A unified theory of commutator estimates for a class of interpolation methods, Adv. Math. 169 (2002), 241–312. Zbl pre01836808, MR 1 926 224. | MR 1926224 | Zbl 1022.46017
Sharp estimates for the segment multiplier, Collect. Math. 51 (2000), 309–326. Zbl 0982.42006, MR 2001m:42027. | MR 1814332
Quelques procédés d’interpolation d’opérateurs linéaires et quelques applications, Seminaire Schwartz II (1960–61), 2–3. (1960)
Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113–190. Zbl 0204.13703, MR 29 #5097. (1964) | MR 0167830 | Zbl 0204.13703
Complex interpolation, Comp. Math. 18 (1967), 117–147. Zbl 0153.16402, MR 36 #6927. (1967) | MR 0223880 | Zbl 0153.16402
Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, N.J., 1970. Zbl 0207.13501, MR 44 #7280. (1970) | MR 0290095 | Zbl 0207.13501
Generalized interpolation spaces, Trans. Amer. Math. Soc. 156 (1971), 309–334. Zbl 0213.13002, MR 43 #906. (1971) | MR 0275149 | Zbl 0213.13002
Interpolation of normed Abelian groups, Ann. Mat. Pura Appl., IV. Ser. 92 (1972), 217–262. Zbl 0237.46039, MR 48 #891. (1972) | MR 0322529 | Zbl 0237.46039
Interpolation spaces. An introduction, Grundlehren der mathematischen Wissenschaften 223. Springer-Verlag, Berlin, 1976. Zbl 0344.46071, MR 58 #2349. (1976) | MR 0482275 | Zbl 0344.46071
Factorization theorems for Hardy spaces in several variables, Ann. Math. 103 (1976), 611–635. Zbl 0326.32011, MR 54 #843. (1976) | MR 0412721 | Zbl 0326.32011
Monotonicity properties of interpolation spaces, Ark. Mat. 14 (1976), 213–236. Zbl 0339.46024, MR 56 #1095. (1976) | MR 0442714 | Zbl 0339.46024
New thoughts on Besov spaces, Duke University Mathematics Series. Durham, N.C., 1976. Zbl 0356.46038, MR 57 #1108. (1976) | MR 0461123 | Zbl 0356.46038
Littlewood-Paley multipliers theory, Springer-Verlag, Berlin, 1977. Zbl 0464.42013, MR 58 #29760. (1977) | MR 0618663
A function parameter in connection with interpolation of Banach spaces, Math. Scand. 42 (1978), 289–305. Zbl 0389.46024, MR 80d:46124. (1978) | MR 0512275 | Zbl 0389.46024
Interpolation of linear operators, (Russian) Nauka, Moscow, 1978. Zbl 0493.46058, MR 81f:46086. English transl. in Translations of Mathematical Monographs 54. Amer. Math. Soc., Providence, R.I., 1982. Zbl 0499.46044, MR 84j:46103. (1978) | MR 0649411
Interpolation theory, function spaces, differential operators, North-Holland Math. Library 18. North-Holland, Amsterdam, 1978. Zbl 0387.46032, MR 80i:46032b. (1978) | MR 0503903 | Zbl 0387.46033
Weak interpolation in Banach spaces, J. Functional Anal. 33 (1979), 58–94. Zbl 0433.46062, MR 81f:46040. (1979) | MR 0545385 | Zbl 0433.46062
Reiteration theorems for real interpolation and approximation spaces, Ann. Math. Pura Appl. 132 (1982), 291–330. Zbl 0514.46049, MR 86c:46089. (1982) | MR 0696048 | Zbl 0514.46049
Derivatives of analytic families of Banach spaces, Ann. of Math. 118 (1983), 315–347. Zbl 0539.46049, MR 86a:46099. (1983) | MR 0717826 | Zbl 0539.46049
Weighted norm inequalities and related topics, North-Holland Mathematics Studies 116. North-Holland, Amsterdam, 1985. Zbl 0578.46046, MR 87d:42023. (1985) | MR 0807149
A Littlewood-Paley inequality for arbitrary intervals, Rev. Mat. Iberoamericana 2 (1985), 1–14. Zbl 0611.42005, MR 87j:42057. (1985) | MR 0850681
Commutators and other second order estimates in real interpolation theory, Ark. Mat. 24 (1986), 191–219. Zbl 0655.41005, MR 88i:46096. (1986) | MR 0884187
Interpolation of operators, Pure and Applied Mathematics 129. Academic Press, Inc., New York, 1988. Zbl 0647.46057, MR 89e:46001. (1988) | MR 0928802 | Zbl 0647.46057
Nonlinear commutators in interpolation theory, Mem. Amer. Math. Soc. 385 (1988). Zbl 0658.46059, MR 89h:47104. (1988) | MR 0938889 | Zbl 0658.46059
Compacité par compensation et éspaces de Hardy, C. R. Acad. Sci. Paris, Sér. I 309 (1989), 945–949. Zbl 0684.46044, MR 91h:46058. (1989) | MR 1054740
The domain spaces of quasilogarithmic operators, Trans. Amer. Math. Soc. 317 (1989), 599–609. MR 90e:46075. (1989) | MR 0974512
Differential estimates and commutators in interpolation theory, In: Analysis at Urbana. Vol. II: Analysis in abstract spaces. Proc. Special year in modern analysis. London Math. Soc. Lecture Note Ser. 138, 170–220. Cambridge Univ. Press, Cambridge, 1989. Zbl 0696.46050, MR 90k:46157. (1989) | MR 1009191 | Zbl 0696.46050
Vector valued commutators and applications, Indiana Univ. Math. J. 38 (1989), 959–971. Zbl 0696.47033, MR 90k:47067. (1989) | MR 1029684 | Zbl 0696.47033
Second order estimates in interpolation theory and applications, Proc. Amer. Math. Soc. 110 (1990), 961–969. Zbl 0717.46066, MR 91k:46088. (1990) | MR 1075187 | Zbl 0717.46066
Interpolation functors and interpolation spaces, North-Holland Math. Library 47. North Holland, Amsterdam, 1991. Zbl 0743.46082, MR 93b:46141. (1991) | MR 1107298
Complex interpolation and spaces, Studia Math. 99 (1991), 57–67. Zbl 0772.46041, MR 92j:46134. (1991) | MR 1120739
On the interpolation of analytic families of operators, In: Interpolation spaces and related topics (M. Cwikel, M. Milman and R. Rochberg, eds.). Israel Math. Conf. Proc. 5 (1992), 21–33. Zbl 0856.46046, MR 94b:46102. (1992) | MR 1206488 | Zbl 0856.46046
Differentials of complex interpolation processes for Köthe function spaces, Trans. Amer. Math. Soc. 333 (1992), 479–529. Zbl 0776.46033,MR 92m:46111. (1992) | MR 1081938 | Zbl 0776.46033
Constructive approximation, Grundlehren der Mathematischen Wissenschaften 303. Springer-Verlag, Berlin, 1993. Zbl 0797.41016, MR 95f:41001. (1993) | MR 1261635 | Zbl 0797.41016
Commutators of Littlewood-Paley sums, Ark. Mat. 31 (1993), 117–136. Zbl 0803.42006, MR 94j:42034. (1993) | MR 1230269 | Zbl 0803.42006
Harmonic analysis, Princeton Mathematical Series 43. Princeton University Press, Princeton, N.J., 1993. Zbl 0821.42001, MR 95c:42002. (1993) | MR 1232192 | Zbl 0821.42001
Schechter methods of interpolation and commutators, Math. Nachr. 174 (1995), 35–53. Zbl 0832.46064, MR 96k:46137. (1995) | MR 1349035 | Zbl 0832.46064
Commutators and interpolation methods, Ark. Mat. 33 (1995), 199–216. Zbl 0903.46069, MR 97e:46101. (1995) | MR 1373022 | Zbl 0903.46069
Commutators, interpolation and vector function spaces, In: Function spaces, interpolation spaces, and related topics. Proc. of the workshop, Haifa, Israel, June 7-13, 1995. Israel Math. Conf. Proc. 13, 24–31. Bar-Ilan Univ., Ramat Gan, 1999. Zbl 1007.46024, MR 2000e:46090. (1995) | MR 1707356
Higher order commutators in interpolation theory, Math. Scand. 77 (1996), 301–319. Zbl 0852.46058, MR 97d:46094. (1996) | MR 1379273
Commutators for approximation spaces and Marcinkiewicz-type multipliers, J. Approx. Theory 100 (1999), 251–265. Zbl 0953.41023, MR 2000h:46086. (1999) | MR 1714965 | Zbl 0953.41023