Let be a metric space with a doubling measure, be a boundedly compact metric space and be a Lebesgue precise mapping whose upper gradient belongs to the Lorentz space , . Let be a set of measure zero. Then for -a.e. , where is the -dimensional Hausdorff measure and is the -codimensional Hausdorff measure. This property is closely related to the coarea formula and implies a version of the Eilenberg inequality. The result relies on estimates of Hausdorff content of level sets of mappings between metric spaces and analysis of their Lebesgue points. Adapted versions of the Frostman lemma and of the Muckenhoupt-Wheeden inequality appear as essential tools.
@article{702476, title = {Coarea integration in metric spaces}, booktitle = {Nonlinear Analysis, Function Spaces and Applications}, series = {GDML\_Books}, publisher = {Czech Academy of Sciences, Mathematical Institute}, address = {Praha}, year = {2003}, pages = {149-192}, url = {http://dml.mathdoc.fr/item/702476} }
Malý, Jan. Coarea integration in metric spaces, dans Nonlinear Analysis, Function Spaces and Applications, GDML_Books, (2003), pp. 149-192. http://gdmltest.u-ga.fr/item/702476/
Maximal operators, Lebesgue points and quasicontinuity in strongly nonlinear potential theory, Acta Math. Univ. Comenian. 71 (2002), 35–50. MR 1 943 014. | MR 1943014 | Zbl 1052.46019
Selected topics on analysis on metric spaces, Scuola Normale Superiore Pisa, 2000. | MR 2012736
Orlicz capacities and applications to some existence questions for elliptic PDEs having measure data, ESAIM: Control, Optim. and Calc. Var. 9 (2003), 317–341. | MR 1966536 | Zbl 1075.35012
Sobolev met Poincaré, Memoirs Amer. Math. Soc. 688. Zbl 0954.46022, MR 2000j:46063.
Lectures on analysis on metric spaces, Universitext. Springer-Verlag, New York, 2001. Zbl 0985.46008, MR 2002c:30028. | MR 1800917 | Zbl 0985.46008
Sobolev classes of Banach space-valued functions and quasiconformal mappings, J. Anal. Math. 85 (2001), 87–139. Zbl pre01765855, MR 2002k:46090. | MR 1869604 | Zbl 1013.46023
Mapping of bounded distortion: Hausdorff measure of zero sets, Math. Ann. 324 (2002), 451–464. MR 1 938 454. | MR 1938454
Estimates of norms of operators in weighted spaces, (Czech). Diploma Thesis, Charles University, Prague, 2001.
Functions of bounded higher variation, Indiana Univ. Math. J. 51 (2002), 645–677. MR 2003e:49069. | MR 1911049 | Zbl 1057.49036
Lebesgue points for Sobolev functions on metric spaces, Rev. Mat. Iberoamericana 18 (2002), 685–700. MR 1 954 868. | MR 1954868 | Zbl 1037.46031
Wolff potential estimates of superminimizers of Orlicz type Dirichlet integrals, Manuscripta Math. 110 (2003), 513–525. | MR 1975101 | Zbl 1098.35061
Coarea properties of Sobolev functions, In: Function Spaces, Differential Operators, Nonlinear Analysis. The Hans Triebel Anniversary Volume (D. Haroske, T. Runst, H.-J. Schmeisser, eds.). Birkhäuser, Basel, 2003, pp. 371–381. | MR 1984185 | Zbl 1036.46025
The sharp Riesz potential estimates in metric spaces, Indiana Univ. Math. J. 51 (2002), 251–268. Zbl pre01780940, MR 2003d:46045. | MR 1909289 | Zbl 1038.46027
The co-area formula for Sobolev mappings, Trans. Amer. Math. Soc. 355 (2003), 477–492. Zbl pre01821246,MR 1 932 709. | MR 1932709 | Zbl 1034.46032
Fine behavior of functions with gradients in a Lorentz space, In preparation.
Newtonian spaces: An extension of Sobolev spaces to metric spaces, Rev. Mat. Iberoamericana 16 (2000), 243–279. Zbl 0974.46038, MR 2002b:46059. | MR 1809341
Nonlinear potential theory and weighted Sobolev spaces, Lecture Notes Math. 1736. Springer-Verlag, Berlin, 2000. Zbl 0949.31006, MR 2002f:31027. | MR 1774162 | Zbl 0949.31006
Pointwise differentiability and absolute continuity, Trans. Amer. Math. Soc. 191 (1974), 129–148. Zbl 0295.26013, MR 49 #9129. (191 ) | MR 0344390
Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. 192 (1974), 261–274. Zbl 0289.26010, MR 49 #5275. (192 ) | MR 0340523
Potentiel d’équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions, Medd. Lunds Univ. Mat. Sem. 3 (1935), 1–118. Zbl 0013.06302. (1935) | Zbl 0013.06302
On measures, Ann. Soc. Pol. Math. 17 (1938), 251–252. (1938)
Sulle funzioni assolutamente continue in due variabili, Ann. Scuola Norm. Sup. Pisa, II. Ser. 10 (1941), 91–101. Zbl 0025.31301, MR 3,230e. (1941) | MR 0005911 | Zbl 0025.31301
Functions whose partial derivatives are measures, Illinois J. Math. 4 (1960), 452–478. Zbl 0151.05402, MR 24 #A202. (1960) | MR 0130338 | Zbl 0151.05402
An integral formula for the total variation, Arch. Math. 111 (1960), 218–222. Zbl 0094.26301, MR 22 #5710. (1960) | MR 0114892
Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 153. Springer-Verlag, New York, 1969. Zbl 0176.00801, MR 41 #1976. (1969) | MR 0257325 | Zbl 0176.00801
On the concept of capacity in the theory of functions with generalized derivatives, (Russian). Sibirsk. Mat. Zh. 10 (1969), 1109–1138. English transl. Siberian Math. J. 10 (1969), 818–842. Zbl 0199.20701. (1969) | MR 0276487
Extrapolation and interpolation of quasilinear operators on martingales, Acta Math. 124 (1970), 249–304. Zbl 0223.60021, MR 55 #13567. (1970) | MR 0440695
Analyse harmonique non-commutative sur certain espaces homogènes, Lecture Notes in Math. 242. Springer-Verlag, Berlin, 1971. Zbl 0224.43006, MR 58 #17690. (1971) | MR 0499948
The Lebesgue set of a function whose partial derivatives are -th power summable, Indiana Univ. Math. J. 22 (1972), 139–158. Zbl 0238.28015, MR 55 #8321. (1972) | MR 0435361
Nonlinear potential theory, Uspekhi Mat. Nauk 27 (1972), 67–138. English transl. in Russian Math. Surveys, 27 (1972), 71–148. MR 53 #13610. (1972) | MR 0409858
Transformations by functions in Sobolev spaces and lower semicontinuity for parametric variational problems, Bull. Amer. Math. Soc. 79 (1973), 790–795. Zbl 0275.49041, MR 48 #1013. (1973) | MR 0322651 | Zbl 0275.49041
Interpolation of operators, Pure and Applied Mathematics 129, Academic Press, Inc., Boston, MA, 1988. Zbl 0647.46057, MR 89e:46001. (1988) | MR 0928802 | Zbl 0647.46057
Weakly differentiable functions. Sobolev spaces and function of bounded variation, Graduate Texts in Mathematics 120. Springer-Verlag, New York, 1989. Zbl 0692.46022, MR 91e:46046. (1989) | MR 1014685
-theory of potential for generalized kernels and its applications, (Russian). Akad. Nauk SSSR Sibirsk. Otdel., Inst. Mat. Novosibirsk, 1990. (1990) | MR 1090089
Hausdorff measures, capacities and Sobolev spaces with weights, Ann. Acad. Sci. Fenn. Math. Diss. 81 (1991). Zbl 0723.46024, MR 92i:46039. (1991) | MR 1108686 | Zbl 0723.46024
On the critical-values lemma and the coarea formula, (Italian). Boll. Un. Mat. Ital., VII. Ser. B 6 (1992), 561–578. Zbl 0762.46019. (1992) | MR 1191953 | Zbl 0762.46019
The Wiener test and potential estimates for quasilinear elliptic equations, Acta Math. 172 (1994), 137–161. Zbl 0820.35063, MR 95a:35050. (1994) | MR 1264000
Function spaces and potential theory, Grundlehren der Mathematischen Wissenschaften 314, Springer-Verlag, Berlin, 1995.Zbl 0834.46021. (1995) | MR 1411441 | Zbl 0834.46021
Lusin’s condition (N) and of the class , J. Reine Angew. Math. 458 (1995), 19–36. Zbl 0812.30007, MR 95m:26024. (1995) | MR 1310951
Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability, Cambridge Studies in Advanced Mathematics 44. Cambridge University Press, Cambridge, 1995. Zbl 0819.28004, MR 96h:28006. (1995) | MR 1333890 | Zbl 0819.28004
On the Wolff potential and quasilinear elliptic equations involving measures, Ann. Acad. Sci. Fenn. Math. Diss. 104 (1996). Zbl 0860.35041, MR 97e:35069. (1996) | MR 1386213 | Zbl 0860.35041
Finding curves on general spaces through quantitative topology, with application to Sobolev and Poincaré inequalities, Selecta Math. (N. S.) 2 (1996), 155–295. Zbl 0870.54031, MR 97j:46033. (1996) | MR 1414889
Fine regularity of solutions of elliptic differential equations, Mathematical Surveys and Monographs 51. Amer. Math. Soc., Providence, R.I., 1997. Zbl 0882.35001, MR 98h:35080. (1997) | MR 1461542
A note on capacity and Hausdorff measure in homogeneous spaces, Potential Anal. 6 (1997), 87–97. Zbl 0873.31013, MR 98e:31007. (1997) | MR 1436823 | Zbl 0873.31013
Weight theory for integral transforms on spaces of homogeneous type, Pitman Monographs and Surveys in Pure and Applied Mathematics 92. Longman, Harlow, 1998. Zbl 0955.42001, MR 2003b:42002. (1998) | MR 1791462 | Zbl 0955.42001
Hölder quasicontinuity of Sobolev functions on metric spaces, Rev. Mat. Iberoamericana 14 (1998), 601–622. Zbl pre01275454, MR 2000e:46046. (1998) | MR 1681586 | Zbl 1155.46306
Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), 1–61. Zbl 0915.30018, MR 99j:30025. (1998) | MR 1654771 | Zbl 0915.30018
Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999), 428–517. Zbl 0942.58018, MR 2000g:53043. (1999) | MR 1708448 | Zbl 0942.58018
Sobolev mappings, co-area formula and related topics, In: Proceedings on analysis and geometry. International conference in honor of the 70th birthday of Professor Yu. G. Reshetnyak, Novosibirsk, Russia, August 30–September 3, 1999 (S. K. Vodop’yanov, ed.). Izdatel’stvo Instituta Matematiki Im. S. L. Soboleva SO RAN, Novosibirsk, 2000, pp. 227–254. Zbl 0988.28002, MR 2002h:28005. (1999) | MR 1847519
On functions with derivatives in a Lorentz space, Manuscripta Math. 100 (1999), 87–101. Zbl 0976.26004, MR 2000j:46064. (1999) | MR 1714456 | Zbl 0976.26004
Sufficient conditions for change of variables in integral, In: Proceedings on analysis and geometry. International conference in honor of the 70th birthday of Professor Yu. G. Reshetnyak, Novosibirsk, Russia, August 30–September 3, 1999 (S. K. Vodop’yanov, ed.). Izdatel’stvo Instituta Matematiki Im. S. L. Soboleva SO RAN, Novosibirsk, 2000, pp. 370–386. Zbl 0988.26011, MR 2002m:26013. (1999) | MR 1847527
Remarks on measure-valued Lagrangians on homogeneous spaces, (Italian). Papers in memory of Ennio De Giorgi. Ricerche Mat. 47 suppl. (1999), 217–231. Zbl 0957.46027, MR 2002e:31005. (1999) | MR 1765686 | Zbl 0957.46027