Counting of even and odd restricted permutations
Baltić, Vladimir ; Stevanović, Dragan
ARS MATHEMATICA CONTEMPORANEA, Tome 9 (2014), / Harvested from ARS MATHEMATICA CONTEMPORANEA

Let p be a permutation of the set Nn = {1, 2, …, n}. We introduce techniques for counting N(n; k; r; I; π), the number of even or odd restricted permutations of Nn satisfying the conditions  − k ≤ p(i) − i ≤ r (for arbitrary natural numbers k and r) and p(i) − i ∉ I (for some set I) and π = 0 for even permutations and π = 1 for odd permutations.

Publié le : 2014-01-01
DOI : https://doi.org/10.26493/1855-3974.661.ab7
@article{661,
     title = {Counting of even and odd restricted permutations},
     journal = {ARS MATHEMATICA CONTEMPORANEA},
     volume = {9},
     year = {2014},
     doi = {10.26493/1855-3974.661.ab7},
     language = {EN},
     url = {http://dml.mathdoc.fr/item/661}
}
Baltić, Vladimir; Stevanović, Dragan. Counting of even and odd restricted permutations. ARS MATHEMATICA CONTEMPORANEA, Tome 9 (2014) . doi : 10.26493/1855-3974.661.ab7. http://gdmltest.u-ga.fr/item/661/