Polarizablity of 2D and 3D conducting objects using method of moments
Shahpari, Morteza ; Thiel, David Victor ; Lewis, Andrew
ANZIAM Journal, Tome 53 (2013), / Harvested from Australian Mathematical Society

Fundamental antenna limits of the gain-bandwidth product are derived from polarizability calculations. This electrostatic technique has significant value in many antenna evaluations. Polarizability is not available in closed form for most antenna shapes and no commercial electromagnetic packages have this facility. Numerical computation of the polarizability for arbitrary conducting bodies was undertaken using an unstructured triangular mesh over the surface of 2D and 3D objects. Numerical results compare favourably with analytical solutions and can be implemented efficiently for large structures of arbitrary shape. References P. Arcioni, M. Bressan, and L. Perregrini. On the evaluation of the double surface integrals arising in the application of the boundary integral method to 3D problems. IEEE Trans. Microw. Theory Tech., 45(3):436--439 (1997). doi:10.1109/22.563344 G. J. Burke and A. J. Poggio. Numerical Electromagnetics Code (NEC)---Method of Moments. National Technical Information Service, U.S. Department of Commerce (1981). http://www.ntis.gov/search/product.aspx?ABBR=ADA956129 T. F. Eibert and V. Hansen. On the calculation of potential integrals for linear source distributions on triangular domains. IEEE Trans. Antennas Propag., 43(12):1499 --1502 (1995). doi:10.1109/8.475946 FEKO, EM Software and Systems. FEKO 6.1.1, 1998-2011. http://www.feko.info/ M. Gustafsson. Physical bounds on antennas of arbitrary shape. Loughborough Antennas and Propagation Conference, (2011). doi:10.1109/LAPC.2011.6114002 M. Gustafsson, C. Sohl, and G. Kristensson. Illustrations of new physical bounds on linearly polarized antennas. IEEE Trans. Antennas Propag., 57(5):1319 --1327 (2009). doi:10.1109/TAP.2009.2016683 M. Gustafsson, C. Sohl, C. Larsson, and D. Sjoberg. Physical bounds on the all-spectrum transmission through periodic arrays. Europhysics Letters, 87(3):34002 (2009). doi:10.1209/0295-5075/87/34002 R. F. Harrington. Field Computation by Moment Methods. IEEE Press (1993). R. E. Kleinman and T. B. A. Senior. Rayleigh scattering. In V. V. Varadan and V. K. Varadan, editors, Handbook on Acoustic, Electromagnetic and Elastic Wave Scattering, volume 2, pages 1--70. Elsevier (1986). C. Sohl, M. Gustafsson, and G Kristensson. Physical limitations on broadband scattering by heterogeneous obstacles. J. Phys. A: Math. Theor., 40(36):11165 (2007). doi:10.1088/1751-8113/40/36/015 C. Sohl, C. Larsson, M. Gustafsson, and G. Kristensson. A scattering and absorption identity for metamaterials: Experimental results and comparison with theory. J. Appl. Phys., 103(5):054906 (2008). doi:10.1063/1.2875727

Publié le : 2013-01-01
DOI : https://doi.org/10.21914/anziamj.v54i0.6405
@article{6405,
     title = {Polarizablity of 2D and 3D conducting objects using method of moments},
     journal = {ANZIAM Journal},
     volume = {53},
     year = {2013},
     doi = {10.21914/anziamj.v54i0.6405},
     language = {EN},
     url = {http://dml.mathdoc.fr/item/6405}
}
Shahpari, Morteza; Thiel, David Victor; Lewis, Andrew. Polarizablity of 2D and 3D conducting objects using method of moments. ANZIAM Journal, Tome 53 (2013) . doi : 10.21914/anziamj.v54i0.6405. http://gdmltest.u-ga.fr/item/6405/