The multisubset sum problem for finite abelian groups
Muratović-Ribić, Amela ; Wang, Qiang
ARS MATHEMATICA CONTEMPORANEA, Tome 11 (2015), / Harvested from ARS MATHEMATICA CONTEMPORANEA

We use a similar techique as in M. Kosters, The subset problem for finite abelian groups, J. Combin. Theory Ser. A 120 (2013), 527-530, to derive a formula for the number of multisubsets of a finite abelian group G with any given size and any given multiplicity such that the sum is equal to a given element g from G. This also gives the number of partitions of g into a given number of parts over a finite abelian group.

Publié le : 2015-01-01
DOI : https://doi.org/10.26493/1855-3974.566.0da
@article{566,
     title = {The multisubset sum problem for finite abelian groups},
     journal = {ARS MATHEMATICA CONTEMPORANEA},
     volume = {11},
     year = {2015},
     doi = {10.26493/1855-3974.566.0da},
     language = {EN},
     url = {http://dml.mathdoc.fr/item/566}
}
Muratović-Ribić, Amela; Wang, Qiang. The multisubset sum problem for finite abelian groups. ARS MATHEMATICA CONTEMPORANEA, Tome 11 (2015) . doi : 10.26493/1855-3974.566.0da. http://gdmltest.u-ga.fr/item/566/