Approximation of solutions to nonautonomous difference equations
Migda, Janusz ; Migda, Małgorzata
Tatra Mountains Mathematical Publications, Tome 72 (2019), / Harvested from Mathematical Institute

We study the asymptotic properties of solutions to nonautonomous dierence equationsof the form\delta^m x_n  = a_n f ( n,  x_{\sima(n)} ) + b_n,\quad f :\mathbb{N} \times \mathbb{R} \to \mathbb{R} ,\quad \sigma \mathbb{N} \to \mathbb{N}.Using the iterated remainder operator and asymptotic dierence pairs we establish some results concerning approximative solutions and approximations of solutions. Our approachallows us to control the degree of approximation.

Publié le : 2019-01-01
@article{521,
     title = {Approximation of solutions to nonautonomous difference equations},
     journal = {Tatra Mountains Mathematical Publications},
     volume = {72},
     year = {2019},
     language = {EN},
     url = {http://dml.mathdoc.fr/item/521}
}
Migda, Janusz; Migda, Małgorzata. Approximation of solutions to nonautonomous difference equations. Tatra Mountains Mathematical Publications, Tome 72 (2019) . http://gdmltest.u-ga.fr/item/521/