Cardiac ischaemia is a restriction of blood supply to tissues in the heart. It is often diagnosed via an electrocardiograph by looking at the segment of the electrocardiograph between the QRS complex and the t wave, which is known as the ST segment. Previous work on ischaemia during the ST segment has shown that the shape of the ischaemic region can significantly affect the epicardial potential distribution at the surface of the heart. This numerical study compares the results from the steady state simulations with a more realistic transient model. The model consists of a slab of ventricular tissue with an ischaemic region at the centre resting on a blood bath. The transient bidomain equations were solved using a finite volume method for the spatial discretisation and a semi-implicit method for the time integration. Ischaemia is included by taking into account three of the main physiological consequences which include hyperkalaemia, acidosis and anoxia. Results are obtained for three different ischaemic region geometries (rectangular, cylindrical and semi-ellipsoidal). References J. P. Barnes and P. R. Johnston. The effect of the shape of ischaemic regions in the heart on the resulting extracellular epicardial potential distributions. In Computing in Cardiology, 2010, pages 177--180, sept 2010. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5737938. L Clerc. Directional differences of impulse spread in trabecular muscle from mammalian heart. The Journal of Physiology, 255(2):335--346, 1976. http://jp.physoc.org/content/255/2/335. Scirun: A scientific computing problem solving environment, Scientific Computing and Imaging Institute. http://www.scirun.org. P. R. Johnston and D. Kilpatrick. The effect of conductivity values on st segment shift in subendocardial ischaemia. Biomedical Engineering, IEEE Transactions on, 50(2):150--158, feb 2003. doi:10.1109/TBME.2002.807660 P. R. Johnston, D. Kilpatrick, and Chuan Yong Li. The importance of anisotropy in modeling st segment shift in subendocardial ischaemia. Biomedical Engineering, IEEE Transactions on, 48(12):1366--1376, dec 2001. doi:10.1109/10.966596 Peter R. Johnston. A finite volume method solution for the bidomain equations and their application to modelling cardiac ischaemia. Computer Methods in Biomechanics and Biomedical Engineering, 13(2):157--170, 2010. doi:10.1080/10255840903067072 Robert S. MacLeod, Shibaji Shome, Jeroen Stinstra, Bonnie B. Punske, and Bruce Hopenfeld. Mechanisms of ischemia-induced st-segment changes. Journal of Electrocardiology, 38(4, Supplement):8--13, 2005. doi:10.1016/j.jelectrocard.2005.06.095 R. Christian Penland, David M. Harrild, and Craig S. Henriquez. Modeling impulse propagation and extracellular potential distributions in anisotropic cardiac tissue using a finite volume element discretization. Computing and Visualization in Science, 4:215--226, 2002. doi:10.1007/s00791-002-0078-4 A. E. Pollard, N Hooke, and C. S. Henriquez. Cardiac propagation simulation. Crit Rev Biomed Eng, 20(3-4):171--210, 1992. http://ukpmc.ac.uk/abstract/MED/1478091. Mark Potse, Ruben Coronel, Stephanie Falcao, A.-Robert LeBlanc, and Alain Vinet. The effect of lesion size and tissue remodeling on st deviation in partial-thickness ischemia. Heart Rhythm, 4(2):200--206, 2007. doi:10.1016/j.hrthm.2006.10.022 Blanca Rodriguez, Natalia Trayanova, and Denis Noble. Modeling cardiac ischemia. Annals of the New York Academy of Sciences, 1080(1):395--414, 2006. doi:10.1196/annals.1380.029 Daniel Romero, Rafael Sebastian, Bart Bijnens, Viviana Zimmerman, Patrick Boyle, Edward Vigmond, and Alejandro Frangi. Effects of the purkinje system and cardiac geometry on biventricular pacing: A model study. Annals of Biomedical Engineering, 38:1388--1398, 2010. doi:10.1007/s10439-010-9926-4 B. J. Roth. Action potential propagation in a thick strand of cardiac muscle. Circulation Research, 68(1):162--173, 1991. doi:10.1161/01.RES.68.1.162 Robin M. Shaw and Yoram Rudy. Electrophysiologic effects of acute myocardial ischemia: a theoretical study of altered cell excitability and action potential duration. Cardiovascular Research, 35(2):256--272, 1997. doi:10.1016/S0008-6363(97)00093-X K. H. W. J. ten Tusscher, D. Noble, P. J. Noble, and A. V. Panfilov. A model for human ventricular tissue. American Journal of Physiology---Heart and Circulatory Physiology, 286(4):H1573--H1589, 2004. doi:10.1152/ajpheart.00794.2003 K. H. W. J. ten Tusscher and A. V. Panfilov. Alternans and spiral breakup in a human ventricular tissue model. American Journal of Physiology---Heart and Circulatory Physiology, 291(3):H1088--H1100, September 2006. doi:10.1152/ajpheart.00109.2006 Leslie Tung. A bi-domain model for describing ischemic myocardial d-c potentials. PhD thesis, Massachusetts Institute of Technology, 1978. http://hdl.handle.net/1721.1/16177. Charles C. Wolferth, Samuel Bellet, Mary M. Livezey, and Franklin D. Murphy. Negative displacement of the rs-t segment in the electrocardiogram and its relationships to positive displacement; an experimental study. American Heart Journal, 29(2):220--245, 1945. doi:10.1016/0002-8703(45)90519-9
@article{5101, title = {The effect of ischaemic region shape on epicardial potential distributions in transient models of cardiac tissue}, journal = {ANZIAM Journal}, volume = {52}, year = {2012}, doi = {10.21914/anziamj.v53i0.5101}, language = {EN}, url = {http://dml.mathdoc.fr/item/5101} }
Barnes, Josef; Johnston, Peter. The effect of ischaemic region shape on epicardial potential distributions in transient models of cardiac tissue. ANZIAM Journal, Tome 52 (2012) . doi : 10.21914/anziamj.v53i0.5101. http://gdmltest.u-ga.fr/item/5101/